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More about automorphisms




Bad ways to specify an automorphism

Let K C L be a field extension. How to describe o € Autk(L)?

Take K = Q C L = Q(\/2).
Because L ~q Q[x]/(x* — 2) ~¢ Q(—v/2) = L, we have

_ L — L
g a+bvV2 — a—bV2 -

This o takes (1 —/2)” = 0 to (1 4+ v/2)" — +o0, so it is not
continuous at all!
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Bad ways to specify an automorphism

Let K C L be a field extension. How to describe o € Autk(L)?

o is a K-automorphism <= o is K-linear: o(kx) = ko(x) for
ke K, xe L.

~ if [L : K] < 00, we could fix a K-basis of L, and write down
the matrix of o.
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Bad ways to specify an automorphism

Let K C L be a field extension. How to describe o € Autk(L)?

o is a K-automorphism <= o is K-linear: o(kx) = ko(x) for
ke K, xe L.

~ if [L : K] < 00, we could fix a K-basis of L, and write down
the matrix of o.

But there is a much better way!
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Good way to specify an automorphism

Suppose L = K(aq, -+ ,a,). Any o € Autk(L) is completely
determined by o(aq),- -+ ,o(a,).

\

% .
E . o0 o

Every x € L is of the form x = & : .
D byyodorok
Jr

Iy i

where aj, ... i, bj,...; € K

> 0@ g)olad o) 3 g ola)tolary

~ O'(X) _ e ‘ _ i
> olbyy)oled---ak) Y by go(an)t o)
e Judr

determined by the values o(a1), -+, 0(a,). O
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Good way to specify an automorphism

Suppose L = K(aq, -+ ,a,). Any o € Autk(L) is completely
determined by o(aq),- -+ ,o(a,).

o € Autg (Q(V/2)) is determined by o(v/2).

o € Autg (Q(v2,/3)) is determined by (o(v/2), 5(v/3)).
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Good way to specify an automorphism

Suppose L = K(aq, -+ ,a,). Any o € Autk(L) is completely
determined by o(ay), - ,o(a,).

K-automorphisms take roots of F(x) € K|[x] to roots
of F(x) € K[x]
~- for each j, they take o; to a conjugate of q;.

O'EAUT.Q(Q\/E) \/§)ZZ|:\/§.

o € Autg (@ ) ~ O'(\/§) = 4++/2, 0(\/§) = ++/3.
(Q(
)

o € Autg Q(v2 ) o(v/2) root of x3 — 2.
But o(v/2) € @(\/_) C R, so a(\/i) = /2,500 =1d.




Overview of the Galois correspondence

Let K =Q, L = Q(v/2,v/3), and G = Autk(L).
We admit that G = (02, 03) >~ Z/27 x Z/2Z, where

o2(V2) = —V2, 05(V3) = V3,
o3(V3) = V3. 03(v3) = —V3.
Reminder: if H C Autg(L), then
" ={xeL|o(x)=xforall o € H}
is a subfield of L containing Q.

H = {Id, o2} ~ L" = Q(+/3).
H = {ld, 03} ~ L" = Q(+/2).
H=G6~ L"=Q.
H={ld} ~ LH = L.
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Overview of the Galois correspondence

Let K =Q, L =Q(v/2,V3), and G = Aut(L).

We admit that G = (03, 03) ~ Z /27 x 7Z/2Z, where
0'2(\/5) = —\/5, 02(\/5) = \/§,
0'3(\/5) — \/§, 0'3(\/5) — —\/§.

~> Galois correspondence

subgroups H < G <— intermediate extensions K C E C L

H — LY
Autg(L) i E
{Id} Q(v2,V73)
@ ¢ C O
{ld, 03} {ld oz}  «—  QWV?2) Q(V3)
¢ @ ) C
G Q
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Overview of the Galois correspondence

Let K =Q, L =Q(v/2,V3), and G = Aut(L).

We admit that G = (03, 03) ~ Z /27 x 7Z/2Z, where
0'2(\/5) = —\/5, 02(\/5) = \/§,
0'3(\/5) — \/§, 0'3(\/5) — —\/§.

~> Galois correspondence

subgroups H < G <— intermediate extensions K C E C L

H — LH
Autg(L) i E
{Id} Q(v2,V73)
2 N Q¢ C U9
{Ild, o3} {Id, 0003} {ld, 05} —  Q(W2) ? Q(v3)
e NN O U C
G Q
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Overview of the Galois correspondence

Let K =Q, L =Q(v/2,V3), and G = Aut(L).

We admit that G = (03, 03) ~ Z /27 x 7Z/2Z, where
0'2(\/5) = —\/5, 02(\/5) = \/§,
0'3(\/5) — \/§, 0'3(\/5) — —\/§.

~> Galois correspondence

subgroups H < G <— intermediate extensions K C E C L

H — LH
Autg(L) i E
{1d} QV2.3)
2 N Q¢ VRN
{ld, o3} {Id, 0203} {ld, 02} > @(\/i) Q(\/a) Q(\ﬁ)
QAR O U C
G Q
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But it can go very wrong!

Counter-example

Take K = Q, L = Q(v/2). Then Autk(L) = {Id}

{ld} 77

X C r~=

~+ We need the presence of automorphisms to make the
Galois correspondence work.
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Separable extensions




Separability

Definition (Separable element, separable extension)

Let K C L be an algebraic extension, and let o € L.
©Q « is separable over K if its minimal polynomial over K is
separable (disc #0).
© The extension K C L is separable if all the elements of L
are separable over K.
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Separability

Definition (Separable element, separable extension)

Let K C L be an algebraic extension, and let o € L.
©Q « is separable over K if its minimal polynomial over K is
separable (disc #0).
© The extension K C L is separable if all the elements of L
are separable over K.

Bad things can happen in characteristic p!
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Factorisation of xP — a in characteristic p

Lemma (Factorisation of x? — a in characteristic p)

Let charK = p, a € K, and F(x) = x? — a € K|[x].
@ /f there exists b € K such that a = bP, then the
factorisation of F(x) in K[x] is F(x) = (x — b)P.
@ Else, F(x) is irreducible in K|[x].

If a = bP, then F(x) = xP — bP = (x — b)~.

Conversely, let 3 € K be a root of F(x), so 37 = a. Then

F(x) = (x — B)P € K[x]. Suppose F(x) reducible over K, and

let G(x) € K[x] be a nontrivial factor. Then
G(x)=(x—pB)"=x —dBx? 4.

with 0 < d =deg G < p, so df € K.

But0#de K, sopeK. O




An example of inseparability

Counter-example

Let K = F,(t) be the rational fraction field over [F,.
Observe that KP = Frob(K) = F,(t?), so t & K,

~ F(x) = xP — t € K[x] is irreducible.

Consider stem field L = F,(t}/P) = F,(u), u = t'/°.
Then F(u) =0, so u algebraic / K with min poly F(x).
But in L[x], F(x) = (x — u)P ~~ inseparable!

Besides, for all o € Autk(L), o(u) root of F(x) € K[x]
~ o(u) = u ~ Autk(L) = {Id}, bad for Galois!

Squarefree-ness of a polynomial depends on the ground field!
Separability does not, because it is detected by disc # 0.

v
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Shape of inseparable irreducible polynomials

Let P(x) € K|[x] irreducible and inseparable. Then P'(x) = 0.

0 = disc P ~ Res(P, P’), so P and P’ have a common factor,
which can only be P since P is irreducible.
But deg P’ < degP,so P | PP — P’ =0. O
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Shape of inseparable irreducible polynomials

Let P(x) € K|[x] irreducible and inseparable. Then P'(x) = 0.

Let char K = p, and P(x) € K|[x] irreducible in K[x]. TFAE:
1 P(x) is inseparable,

2 P'(x)=0,

3 P(x) = Q(xP) for some Q(x) € K|[x].

1 = 2: By lemma.
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Shape of inseparable irreducible polynomials

Let char K = p, and P(x) € K|[x] irreducible in K[x]|. TFAE:
1 P(x) is inseparable,

2 P'(x)=0,

3 P(x) = Q(xP) for some Q(x) € K|[x].

1 = 2: By lemma.
2 = 3: Write P(x) = > ;ajx). Then 0= P'(x) = >_;jaj’
so jaj = 0 for all j, so aj = 0 unless j = 0 in K, that is

unless p | J.
3= 1: If P(x) = Q(xP), then P'(x) = px"1Q'(xP) =0 as
p =0, so gcd(P, P") = P. O
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Perfect fields
Definition
A field is perfect if it has no inseparable extension.

© /fchar K =0, then K is perfect.
©Q Ifchar K = p, then K is perfect <— KP = K.

If char K = p, then K perfect <= Frob € Aut(K).
In particular, finite fields are perfect, even though they have
char > 0.
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Perfect fields
(Theorem ]

©Q /fchar K =0, then K is perfect.
© Ifchar K = p, then K is perfect <—= KP = K.

Suppose K not perfect. Then we can find K C L inseparable,
meaning there is a € L whose min poly P(x) € K[x] is
inseparable, so has common factor with P’ ~~ P’ = 0.

If char K = 0, then deg P’ = deg P — 1, absurd.

If char K = p and KP = K, then Frob € Aut(K), so

every a € K has a (unique) p-th root a*/? = Frob™'(a) € K.
We know P(x) = Q(xP), say P(x) = ) a;x”. But then
P(x) = ,(a/P)P(xi)P = (Z,- a}/Pxf')" not irreducible,
absurd.
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Perfect fields

Q /fchar K =0, then K is perfect.
@ Ifchar K = p, then K is perfect <= KP = K.

Conversely, if char K = p and KP C K, let a € K \ KP;
then P(x) = xP — a € K|[x] is irreducible, and inseparable
since P'(x) =0, so L = K[x]/(P(x)) ~ K(/a) is an
inseparable extension of K. H
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Separability vs. embeddings




Preservation of separability

Let K CECL. If K C L separable, then K C E and E C L
separable.

K CE: If o € E, then a € L, so « separable over K.

E C L: Let « € L have min poly Px(x) € K|[x] over K and
Pe(x) € E[x] over E. Then Pg(x) | Px(x) which is
separable, so Pg(x) cannot have multiple roots in any
extension of E. O]
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Embeddings vs. roots

Let K be a field, and let L, M be extensions of K.
A field morphism f : L — M is automatically injective, hence
an embedding: L~ Imf C M.

Suppose that L = K[x]/(P(x)) with P(x) € K[x] irreducible,
and let a =x € L.

If £ is a K-morphism, then f(a) € M is a root of P(x).

Conversely, if 8 € M is a root of P(x), then

eVﬁ

Klx]

i

L= K[x]/(P(x))

M.

~» K-embeddings of L in M +— Roots of P(x) in M.



Extensions of embeddings vs. roots

Let L = K[x]/(P(x)) with P(x) = > aX € K[x] irreducible,
and as previously « =X € L.
Let also ¢ : K < M, and P,(x) = > 1(a;)x’ € M[x].

We have K ~ (K), so P,(x) is irreducible over +(K).

L.l sM

K ——u(K)

Suppose ' : L — M extends ¢. Then

0="/(P(a) =Y _(a)(ay = P.(/(a)).

J
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Extensions of embeddings vs. roots

Let L = K[x]/(P(x)) with P(x) = > ajx) € K[x] irreducible,
and as previously « =X € L.
Let also ¢ : K <= M, and P,(x) = >, 1(aj)x’ € M[x].

We have K ~ «(K), so P,(x) is irreducible over +(K).

Suppose ¢/ : L — M extends ¢. Then

0="/(P(a)) = Z /(3))/ (a) = P,(/ ().

Conversely, if 5 € M is a root of P,(x), then
L = K[x]/(P(x))

~~ Extensions of ¢« to L «— Roots of P,(x) in M.
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Separability by counting embeddings

Let K be a field, let Q be an algebraically closed extension
of K (e.g. Q= K), and let L be a finite extension of K.
Then Homg (L, Q2) is finite, and N = # Hom (L, Q) is
independent of ) and satisfies

1< N[L:K]
with equality N = [L : K] <= K C L is separable.

- Q

-7,
7:/

<
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Separability by counting embeddings

Let v : K — §Q with Q algebraically closed, and let L be a
finite extension of K.

Then the set Hom,(L, Q) of embeddings L — Q extending ¢ is
finite, and N = # Hom,(L, Q) is independent of Q and satisfies
1< N<LI[L: K],

with equality N = [L : K] <= K C L is separable.

L
K~ i(K)
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Separability by counting embeddings

Write L = K(a1, - -+, a,). Induction on r to prove that
1< N<KJ[L:K]and N=[L: K] if K C L separable.

If r =0, then K = L, so Hom,(L,Q) = {.}, OK.

Suppose true for r — 1.

Let E = K(ov, -+ ,a,1), so L= E(a,).

Then Ng = # Hom,(E, Q) satisfies 1 < Ng < [E : K], so let
te € Hom,(E, Q). Besides [L: E] = [[é’;]] < 00, so let

P(x) € E[x] min poly of a,. As L ~¢ E[x]/(P(x)), the
number N, of // : L — Q extending LE IS

N, = # Roots of P,.(x) in Q < degP,, =degP =[L: E],
whence N < Ng[L: E] < [E: K][L El=|[L:K].
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Separability by counting embeddings

Suppose true for r — 1.

Let E = K(a, -+ ,a,-1), so L = E(a,).

Then Neg = # Hom,(E, Q) satisfies 1 < Ng < [E : K], so let
tge € Hom,(E, Q). Besides [L: E] = % < 00, so let

P(x) € E[x] min poly of a,. As L ~¢ E[x]/(P(x)), the
number N, of //: L — Q extending ¢ is

N,. = # Roots of P,.(x) in Q < degP,, =degP =[L: E],
whence N < Ng[L: E] < [E: K][L: E] =[L: K]

If furthermore K C L is separable, then so are K C E C L,
so Ng = [E : K] by induction and N,, = [L : E] for all
te € Hom,(E, Q) as disc P,, = ¢g(disc P) # 0.
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Separability by counting embeddings

If on the contrary K C L is inseparable, write

L = K(aq,- -, o) with o inseparable over K.

Let Ky = K(au), so that Ky ~x K[x]/(Q(x)) where
Q(x) € K|[x] is the min poly of a; over K.

Then disc Q, = ¢(disc Q) = ¢(0) =0, so

# Hom, (K1, Q) = #Roots of Q, in Q < deg Q = [K; : K]
w #Hom,(L,Q) < [Ki : K][L: K] = [L : K]. 0
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Separability by counting embeddings

Let K C L C M be finite extensions. Then K C M is
separable iff. K C L and L C M are separable.

v

#Homy(M, Q)= > #Hom,(M,Q). 0

tEHom (L,Q2)
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Interlude : group actions




Reminder: Group actions

Definition
Let G be a group with identity 1 € G, and let X be a set.
A left action of G on X is a map

GxX — X
(g, x) —— g-x

such thatg-h-x=gh-x andlg-x=x forallg,h € G
and x € X.

In other words, it is a group morphism from G to the group of
bijections from X to itself.

v

Notation: G O X.
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Reminder: Group actions

Definition
Let G be a group with identity 1 € G, and let X be a set.
A right action of G on X is a map

XxG — X
(x,g) — x-g

such that x-g-h=x-ghand x-1c=x forallg,h € G
and x € X.

In other words, it is a group “anti-morphism”,
ie. p(gh) = ¢(h)p(g), from G to the group of bijections
from X to itself.

Notation: X O G.



Reminder: Group actions

Let G be a group with identity 1 € G, and let X be a set.
A left action of G on X is a map

GxX — X
(g,x) — g-x

such thatg-h-x=gh-x and1g-x=x forallg,h € G
and x € X.

In other words, it is a group morphism from G to the group of
bijections from X to itself.

A Rubik’s cube is not a group, but rather a set of
configurations acted on by a group of rotations of the faces.
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Transitivity and freedom

Let x e X. TheorbitofxisG-x={g-x| ge G} CX.
The stabiliser G, of x is{g € G| g-x=x} <G.

The action is transitive if for all x,y € X, there exists g € G
such that g - x =y, i.e. if there is only one orbit.

The action is free if for all x € X and g € G,
g - x=x—g=1¢.

The action of the group of motions on the set of
configurations of a Rubik's cube is free. It is transitive iff. we
only include the configurations of the cube that are reachable
without taking the cube apart.

v
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Normal extensions




Normal extensions

Let K be a field, L a finite extension of K, and €2 an
algebraically closed extension of K.

Auty (L) acts on Homy (L, Q2) on the right by
L-o=100 (v € Homg(L,Q), o € Autk(L)).
This action is free: 1o o =1 = o = Id since ¢ is injective.

~ # Autk (L) < # Homk(L, Q).

Definition (Normal extension)

The extension K C L is normal if

# Autk (L) = # Homk (L, Q).
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Normal extensions

Definition (Normal extension)

The extension K C L is normal if
# Auty (L) = # Homg (L, Q).

Counter-example
Take K = Q C L = Q(v/2) ~q Q[x]/(x® — 2).

Since char = 0, this extension is separable, so
#Homk(L,C) =[L: K] =3.

However, # Autk (L) = #{ld} = 1 < 3, so this extension is
not normal.
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Characterisation of normal extensions

Let K C L be a finite extension. TFAE:

1 The extension K C L is normal,

2 The action of Autk (L) on Homg (L, Q) is transitive,

3 The elements of Homy (L, Q) all have the same image,

4 Whenever an irreducible P(x) € K[x] has a root in L, it
splits into linear factors over L,

5 L is a splitting field over K of some F(x) € K|[x].
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Characterisation of normal extensions

Counter-example

Take K = Q C L = Q[x]/(x® — 2) ~x Q(V/2).

1 The extension K C L is not normal.

2 Autk(L) = {Id} cannot act transitively on Homk(L, C).

3 The 3 elements of Homk (L, C) have images Q(v/2) C R,
Q(GV2) ¢ R, Q(¢3V2) ¢ R, where (3 = *™/3.

4 P(x) = x® =2 € K|[x] is irreducible over K and has a root
in L, but only factors as 1+ 2 over L.

5 L is not the splitting field of x> — 2 over K.
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Characterisation of normal extensions

1 The extension K C L is normal,
2 The action of Autk (L) on Homy (L, Q) is transitive,
3 The elements of Homy (L, Q) all have the same image,

1< 2: Clear.

2 = 3: Let 11,10 € Homg(L,Q2). Then 1, = 1 0 o for some
o € Autk(L), so 1y = 1p0071, so Imeg = Imy.

3= 2: Let t1,1p € Homg(L, Q). Then

L—=Im(15) = Im(1) <=— L

so 0 =17 01y € Autk(L) satisfies 15 = 13 0 0.
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Characterisation of normal extensions

3 The elements of Hom (L, Q) all have the same image,

4 Whenever an irreducible P(x) € K[x| has a root in L, it
splits into linear factors over L,

3= 4: Let v € Homg(L,Q), I =Im: C Q. Let P(x) € K[x]
irreducible have a root in L ~~ root § € |. WTP that
if v € Q is another root of P(x), then v € [.

Write L = K(ay, -+ ,a,), let 0 # F(x) € K[x] such
that F(a;) =0 for all j, and let S C Q be the splitting
field of P(x)F(x). Then F(u(a;)) =0 for all j, so

I =K((aa), 1 ar)) CS.

S is a splitting field and 3, v € S are K-conjugate

~ v = ®(J) for some ® € Autk(S). But then
v€®()=ImPor=1since ®ore Homg(L,Q).
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Characterisation of normal extensions

3 The elements of Homy (L, Q) all have the same image,

4 Whenever an irreducible P(x) € K[x| has a root in L, it
splits into linear factors over L,

5 L is a splitting field over K of some F(x) € K[x].

4 = 5: Write again L = K(aq,- -+, ). Let Pj(x) € K[x] min
poly of a;, let F(x) = []; Pj(x) € KI[x], and let S C L
be the splitting of F(x) over K. Then L C S; but
since the P;j(x) have all their roots in L, S C L.

5= 3: If L is the splitting field of F(x) € K[x], then for
any ¢ € Homg(L,Q), ¢(L) C Q is the splitting field
of F(x) contained in Q. O
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Normal closure

Let K C L finite. There exists a minimal finite L C N such
that K C N normal. This N is unique up to K-isomorphism.

Again write L = K(a1,--- ,a,) and let P;(x) € K[x] min poly
of ;. Then N is a splitting field of J[; P;(x). ]

Definition (Normal closure)

This N is the normal closure of K C L.

The normal closure of K =Q C L @(\/5) is
N = Q(V2, (3v/2, 3V2) = L(G), where (3 = €73,
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Galois extensions

Let K be a field, and Q D K algebraically closed. We have
proved that if K C L finite, then

#Autk(L) < #Homk(L,Q) < [L:K].

Normal? Separable?

Definition (Galois extension)

A finite extension K C L is Galois if
# Autk(L) = [L: K].
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Characterisation of Galois extensions

Let K C L be a finite extension. TFAE:

1 K C L is Galois,

2 K C L is normal and separable,

3 L = splitting field over K of some separable F(x) € K|[x],

4 For all € L, we have o € K <= o(a) = a VYo € Autk(L);
in other words, K C [A"«<(L) js actually an equality,

5 The min poly over K of any o € L is H (x —5),
BEAutk (L)«
where Autk (L) - o = {o(a) | o € Autk(L)} without
multiplicities.
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Characterisation of Galois extensions

Counter-example

Take K = Q, L = Q(v/2) ~ Autk(L) = {Id}.

1 #Autk(L)=1<3=[L:K].

2 K C L is not normal.

3 K C L is not the splitting field of x> — 2 over K,

4 /2 € L is fixed by all the elements of Autk(L) = {Id}, yet
does not lie in K,

5 The min poly over K of v/2 € L is not
Il x-8=x-v2

BeAuty (L)- /2
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Characterisation of Galois extensions

Counter-example

Take K = F,(t), L = F,(tY/P) ~ Autk(L) = {Id}.

1 #Autk(L)=1<p=][L:K].

2 K C L is not separable.

3 K C L is the splitting field of xP — t = (x — t}/P)P over K
but this polynomial is not separable,

4 tYP € L is fixed by all the elements of Autk(L) = {Id}, yet
does not lie in K,

5 The min poly over K of t}/P € L is not

H (x — B) = x — t'/P.

BEAutk (L)-t1/P
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Characterisation of Galois extensions

1 K C L is Galois,
2 K C L is normal and separable,
3 L = splitting field over K of some separable F(x) € K|[x],

1 < 2: Clear.

2 = 3: K C L normal ~~ splitting field of some F(x) € K[x].
For each root o € L of F(x), let P,(x) be its min
poly. Then P,(x) separable, so
K[x] 2 G(x) = [4ictinet Pa(x) too, and K C L is its
splitting field.

3 = 2: Splitting fields are normal. A splitting field of a
separable polynomial is obtained as a succession of
separable extensions, so is separable.
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Characterisation of Galois extensions

1 K C L is Galois,
4 Forall v € L, we have a € K <= o(a) = o Vo € Autk(L),

5 The min poly over K of any a € L is H (x — 5).
BEAutk (L) o

1= 4 Let K C E = [~ C [, so Autk(L) = Autg(L).
Then [L : K] = # Autk (L) = # Autg(L) < [L : E]
w [E: K] =ER <1,

4 =05 F,(x)= H (x — B) € L[x] has « as a root, and
BEAutk(L)-«
coefficients in LAU*«(L) = K. Conversely, every 3 must
be a root of the min poly of a over K.
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Characterisation of Galois extensions

2 K C L is normal and separable,

5 The min poly over K of any o € L is H (x — B).
BEAutk(L)-«

5= 2: Let a € L; its min poly is F,(x) = H (x —5),
BEAutk (L) o
which has distinct roots ~» K C L separable. Now
suppose P(x) € K|[x] irreducible has a root o € L;
then P(x) is the min poly of & ~» P(x) = F,(x) has
all its roots in L.
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Characterisation of Galois extensions

1 K C L is Galois,

2 K C L is normal and separable,

3 L = splitting field over K of some separable F(x) € K[x],

4 For all o € L, we have o € K <= o(a) = o VYo € Autk(L),

5 The min poly over K of any aw € L is H (x — ).
BEAutk (L)«

O

v
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Characterisation of Galois extensions

1 K C L is Galois,

2 K C L is normal and separable,

3 L = splitting field over K of some separable F(x) € K|[x],

4 Forall o € L, we have a € K <= o(a) = a Vo € Autk(L),

5 The min poly over K of any o € L is H (x — 5).
BEAutk (L)

The main obstruction to Galois-ness is often normal-ness
rather than separability (e.g. in char 0).

If K C L is separable but not normal, its the normal closure N
is still separable over K, so K C N is Galois over K. It is
therefore sometimes called the Galois closure of K C L.

V.
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Galois groups




The Galois group of a Galois extension

From now on, we write L/K rather than K C L.

Definition (Galois group)

The Galois group of a Galois extension L/K is
Gal(L/K) = Autk(L).

Gal(C/R) = {Id, z — 7} ~ Z/2Z.
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Determination of the Galois group

Let L/K be a Galois extension.
o #Gal(L/K)=[L: K].

e For all @ € L, the minimal polynomial P(x) of o over K
has all its roots in L; and whenever (3,~ € L are roots of
P(x), there exists o € Gal(L/K) such that o(3) = 7.

@ The elements of Gal(L/K) are automorphisms
~ they preserve algebraic relations over K,
e.g. if o € Gal(L/K) and if a € L satisfies F(a) =0
where F(x) € K[x], then F(o(c)) = 0 as well.
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Example 1: Q(v/2)/Q

Let K = Q and L = Q(+/2).

@ Since both +/2 € L, L is the splitting field of separable
x? —2 € Q[x] over Q ~~ L is Galois over Q.
o Let G = Gal(L/Q). We have #G = [L: Q] = 2.
Id € G ~» need one other o € Gal(L/Q),
G ={ld, o} ~ 7/2Z.
e Any 7 € G is completely determined by 7(1/2),
and 7(v/2) = £1/2 ~ 2 possibilities.
#G = 2, so both must occur ~ o(v/2) = —v/2,
sogisa+ bv2— a— b2 (a, b€ Q).
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Example 1: Q(+/2)/Q

Let K = Q and L = Q(V/2).

@ Since both +1/2 € L, L is the splitting field of separable
x? —2 € Q[x] over Q ~ L is Galois over Q.

o Let G = Gal(L/Q). We have #G =[L: Q] = 2.
Ild € G ~~ need one other ¢ € Gal(L/Q),
G=A{ld,o} ~Z/2Z.

o Alternatively, there must exist 7 € G taking v/2 to its
conjugate —v/2.
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Example 2: Q(\@, \@)/@

Let K = Q and L = Q(v/2,V3).
@ Since both /2 and both /3 € L, L is the splitting
field of separable (x> —2)(x*> — 3) € Q[x] over Q
~ L is Galois over Q. Let G = Gal(L/Q).

e QCQ(V2) C L soll:Q=[L:Q(W2)QNW2) : Q]
where [Q(v/2) : Q] = 2 and [L : Q(v/2)] < 2.
If [L: Q(v/2)] <2, then Q(v/2) = L >/3,
s0 v/3 = a+ b2 for some a,beqQ.
Then 3 = (a + bv/2)? = (8% + 2b?) + 2abV/2,
so a°> + 2b%> = 3 and 2ab = 0, absurd.
So[L:Q(v2)] =2 s0#G=][L:Q] =4

@ Any 7 € G is completely determined by 7(v/2) = £v/2
and 7'(\/3) = ++/3 ~» 2 x 2 = 4 possibilites.
#G = 4 ~ all 4 possibilities occur.
So G ~{+,—} x{+,-} = (Z2/27) x (Z/27Z).




Example 2: Q(\@, \@)/@

Let K = Q and L = Q(v/2,V/3).

e QCQ(v2) CLsoll:Q]=[L:Q(V2)][Q (\/_) Q]
where [Q(v/2) : Q] =2 and [L : Q(v2)] £ 2
If [L : Q(v/2)] <2, then Q(v2) = L > /3,
so V3 = a+ by/2 for some a,beqQ.
Then 3 = (a+ by/2)? = (a° + 2b?) + 2abV/2,
so a> + 2b%® = 3 and 2ab = 0, absurd.
So [L:Q(v2)] =2, 50 #G=[L:Q] =4

@ Alternatively, there must exist 7, € G taking V2 to —V/2,
and 73 taking V3 to —/3. But can we do both
simultaneously? E.g. can we move V2 but fix v/37?
L = splitting field of x> — 3 over Q(v/2) ~» any element
of Gal(Q(v/2)/Q) extends to an element of Gal(L/Q).
Besides, L/Q(v/2) Galois, and Gal (L/Q(v/2)) ~ Z/2Z,

so we can move v/3 as we want without touching v/2.




Example 3: Q(v/2)/Q

Let K =Q and L = Q(v/2). Let a; = v/2, ap = (3v/2,
a3 = (3v/2 be the complex roots of F(x) = x> — 2 € Q[x],
where (3 = e2™/3,
@ L/Q is not Galois! So we consider its Galois closure
N = Q(a1, az,a3). Let G = Gal(N/Q); we have
#GC=[N:Q]=[N:L][L:Q] >2x3=6.
@ Any o € G must take a root of F(x) € Q[x] to a root of
F(x), and is completely characterised by how it permutes
a1, Qip, i3 ~> we can view G as a subgroup of 53
permuting o, an, as.
@ Since #G > 6, necessarily G = 53.

If L = splitting field over K of F(x) € K|[x] separable of
degree d, then Gal(L/K) can, and should, be thought of as a
subgroup of Sy permuting the d roots of F(x) in L.
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Example 3: Q(v/2)/Q

Let K = Q and L = Q(V2). Let oy = V2, ap = (3v/2,
a3 = (3v/2 be the complex roots of F(x) = x> — 2 € Q[x],
where (3 = e2™/3,

@ L/Q is not Galois! So we consider its Galois closure
N = Q(a1, az,a3). Let G = Gal(N/Q); we have
#G=[N:Q]=[N:L][L:Q]>2x3=6.

@ Any o € G must take a root of F(x) € Q[x] to a root of
F(x), and is completely characterised by how it permutes
a1, i, iz ~> we can view G as a subgroup of 53
permuting o, an, as.

@ Since #G > 6, necessarily G = 53.

The Galois group does NOT preserve real-ness!
In other words, R is NOT normal over Q!
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Example 4: Q(m)/@

Let K = Q and L = Q(a), where @ = /5 4 /21.

o We have Q C Q(v/21) C L, with [Q(v/21) : Q] = 2
and [L: Q(v21)] < 2. If [L: Q(+/21)] =1, then
o = a+ by/21 for some a,beqQ, so
5+ /21 = (a+ by/21)? = (2% 4 21b%) + 2aby/21, so
a’>+21b> =5and 2ab=1 ~ a* —5a*> +21/4 = 0,
whence a*> = 2£2, absurd. So [L: Q] = 4.

@ «ais a root of P(x) = (x> —5)?> — 21 € Q[x], so this is its
min poly over Q

~> the conjugates of « are o, —a, f = /b — /21, —f.

o af=/(5+v2D)(5 - V2I) = VA=2€Qso B e L,
so L/Q is Galois.
Let G = Gal(L/Q); it is a subgroup of order [L: Q] = 4
of S4 permuting ta, +7.
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Example 4: Q(m)/@

Let K = Q and L = Q(«), where o = \/5 + v/21.

The conjugates of « are o, —a, =5 — V21 =2/a, —f.
Any T € G is determined by 7(«a), which is one of 4 the

conjugates of «
~ as #G = 4, all possibilities must occur.

o If 7(a) = «, then 7 = Id fixes a, —av, 3, — .

o If 7




Example 4: Q(m)/@

Let K = Q and L = Q(«), where o = \/5 + v/21.

The Galois group of a splitting field is the group of
permutations of the roots that preserve the relations between
these roots:

In this example, —a = —(a) and aff = 2.
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The Galois correspondence:
Statement and proof




Main slide of the module!

Theorem (Galois correspondence, FUNDAMENTAL)

Let L/K be a finite Galois extension, G = Gal(L/K),
E = {interm. exts. K C E C L}, and H = {subgroups of G}.
1 For all E € &, the extension L/E is Galois.

H = & E - H
2 The maps oy M and E — Gal(L/E)
inclusion-reversing bijections, and inverses of each other.

3 IfE € £ and H € H correspond to each other, then
[L: E]=#H and [E:K]=[G:H]
4 Leto € G. If E € € corresponds to H € H, then o(E)
corresponds to cHo =1 = {cho~! | h € H}.

5 IfE € £ and H € H correspond to each other, then
E/K is Galois <= H is a normal subgroup of G.
In this case, Gal(E/K) ~ G/H via 0 — 0.
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Proof of part 1

Theorem (Galois correspondence)

Let L/K be a finite Galois extension, G = Gal(L/K),
& = {interm. exts. K C E C L}, and H = {subgroups of G}.

1 For all E € &, the extension L/E is Galois.

L/K is Galois, so L is the splitting field over K of some
separable F(x) € K[x], say L = K(aq, ay, - - ) where the ¢;
are the roots of F(x).

Then for all E € &, we also have L = E(ay,ap,-+-), so Lis
the splitting field over E of F(x) € E[x]. O
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Linear lemma

Let K field, and H < Aut(K). Let a;; € K such that the
equations ) ;a1 jX; = »; a»;x; = -~ = 0 has a nonzero
solution xq1, x>, - -+ € K, and such that the equations are
invariant by H. Then they have a nonzero solution in KH.

Let xi,xo, - -+ nonzero solution with as many x; = 0 as
possible, and let jo such that x;, # 0. WLOG, x;, = 1.

Let 0 € H. Then o(x1),0(x2),--- is also a solution, and so is
yi=o0(x1) —x1, ¥ =0(x) — X2, - -.

If x; =0, then y; = 0(0) —0=0; and y;, = 0(1) — 1 =0.
Thus y; = 0 for all j, so x; fixed by all o € H. O
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Proof of part 2

Theorem (Galois correspondence)

H — & dw_€—>H
H — LF "% F y Gal(L/E)

inclusion-reversing bijections, and inverses of each other.

2 The maps @ : are

That ® and V are inclusion-reversing is clear.

Let E € &; then L/E Galois, so
E = LGaI(L/E) — L\II(E) _ CD(W(E))
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Proof of part 2

Theorem (Galois correspondence)

H — €& E - H

2 The maps o : and V : are

H — " E — Gal(L/E)
inclusion-reversing bijections, and inverses of each other.

Let H € H, and H' = W(®(H)) = Gal(L/LH). Clearly H < H'.

Let n = #H, let ay,--- ,,11 € L, and consider the n
n+1
equations Za(aj)xj =0, 0 € H. That's #H = n equations
=1
inn+1 uéknowns, so nonzero solution xq, -+, X,41 € L.
Equations are invariant by H; by lemma, may assume
X1, Xnp1 € LM, Take o = Id: Zj":ll xjo; =0

~ [L: M) < n+1. But L/L" Galois
o #H = #Gal(L/LH) = [L: L] < n = #H
~H=H. O



Proof of part 3

Theorem (Galois correspondence)

Let L/K be a finite Galois extension, G = Gal(L/K),

& = {interm. exts. K C E C L}, and H = {subgroups of G}.

3 IfE €& and H € H correspond to each other, then
[L:E]=#H and [E: K] =[G:H].

L/E is Galois, so [L : E] = # Gal(L/E) = #H.

Gal(L/K L:K
Therefore [G : H] = i—g = iGaIELéE; = [[L:E]] = [E : K]. O
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Proof of part 4

Theorem (Galois correspondence)

Let L/K be a finite Galois extension, G = Gal(L/K),
E = {interm. exts. K C E C L}, and H = {subgroups of G}.

4 Leto € G. If E € € corresponds to H € H, then o(E)
corresponds to cHo ™! = {cho™! | h € H}.

Since H = Gal(L/E),
T € Gal(L/o(E)) <= Ve € E, 1(0(e)) = o(e)
<= VecE, o 'ro(e)=e
o lrocH
< T7€0Hs . O
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A new understanding of normal

Let L/K Galois, and let E € £. Then
E/K Galois <= o(E) = E for all 0 € Gal(L/K).

E /K separable since L/K is, so E/K Galois iff. normal.

= If E/K normal, then E = splitting field over K of some
F(x) € K[x], so E = K(a1, oz, - - - ) where o roots of
F(x) in L. This description is invariant by Gal(L/K).

< Let P(x) € K|[x] irreducible over K have a root « € E.
L/K normal, a € L, so P(x) has all its roots in L;
and if 8 € L is such a root, then 8 = o(«) for some
o € Gal(L/K). But then 8 € o(E) = E, so P(x) has all
its roots in E, so E/K normal. ]
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Proof of part 5

Theorem (Galois correspondence)
5 IfE € £ and H € H correspond to each other, then
E/K is Galois <= H is a normal subgroup of G.

In this case, Gal(E/K) ~ G/H via 0 — 0.

By lemma, E/K Galois <= Vo € G,0(E)=E
= VYoeG,oHo ' =H
<= H normal in G.

Gal(L/K) — Gal(E/K)

g — O|E
well-defined since each o stabilises E, and group morphism,
whose kernel is H ~ induces injection G/H — Gal(E/K).
As #(G/H) =[G : H] = [E : K] = # Gal(E/K), actually
bijection. O]
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The Galois correspondence:
Practice by examples




Example 1: Q(v/2,v/3)/Q
= @(\/5, \/§) is Galois over Q with Galois group
G = Gal(L/Q) = {ld, 02, 03,0203} ~ 7Z/27 x 7/27, where
0-2(\/5) = _\/iv 02(\/§) = \/57
03(\/5) - \/5, 03(\/5) - —\/§.

Galois correspondence:

{1d} Q(v2,v3)

SN /\\

{Ild, o3} {Id,0003} {ld,;n} +— QK2 Q(v3)

S N

Let H = {Id, 0,}; the corresponding E is L" = Q(+/3).
Since G is Abelian, H is normal in G, so E/Q is Galois, and
Gal(E/Q) = G/H = {{Id, 02}, {03, 0203} } ~ Z/27.




Example 2: Q(v/2)/Q

Let K =Q, L = Q(v/2). [L: Q] =3, so Gal(L/Q) = Z/3Z
which has no non-trivial subgroups, so there are no non-trivial
intermediate subfields.
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Example 2: Q(v/2)/Q

Let K =Q, L = Q(v/2). [L: Q] =3, so Gal(L/Q) = Z/3Z
which has no non-trivial subgroups, so there are no non-trivial
intermediate subfields.

WRONG! L/Q is not Galois, so the correspondence may not
apply. But it applies to the extension N/Q,
where N = Q(v/2, (3) is the Galois closure of L over Q.
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Example 2: Q(v/2)/Q

Gal(N/Q) ~ S3 permuting conjugates
Q= \3/5’ Qo = (3\3/57 a3 = <§\3f2,

~> subgroup diagram:

{1d)
2/2//2/ \

/

{Id,(1,2)} {ld, (1,3)} {I4,(2,3)} 3\
\3\3\ A

Gal(N/Q) ~ S,

where A; = {ld, (1,2,3),(1,3,2)} ~ Z/37Z is the alternate
subgroup of 5.




Example 2: Q(v/2)/Q

{id}
2///2/2/’
///7 —

{Id,(1,2)} {Id,(1,3)} {Id,(2,3)} 3
3\3 \ \A3
\\3\ /2/

Gal(N/Q) ~ S;




Example 2: Q(v/2)/Q

H = {Id, (2,3)} has order 2 and index 3, so E = N" has
[E:Q]=3and [N: E]=2.

aq is fixed by H, so a; € E, so Q(«;) C E. By tower law
applied to Q C Q(«y) C E, actually E = Q(ay) = L.

Let us now determine F = N3,
We have [F : Q] =2 and [N: F] = 3.
Observe that (3 = §2 = &2 = 21 is fixed by H, so Q(¢3) C F.

ap a3
Also note that as root of irreducible x*> + x +1 = XX3_’11 € Q[x]

~ [Q(¢3) : Q] =2, so F = Q(¢3) by tower law.
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Example 2: Q(v/2)/Q

%{Id}

/ —

{Id, (1,2)} {Id,(1,3)} {Id,(2,3)} 3
\ \ \A3




Example 2: Q(v/2)/Q

For each intermediate E, N/E is Galois (actually splitting field
of x3 — 2 over E).
Only A3 is normal in S3, so only Q((3) is Galois over K = Q.

In fact, the other subgroups

{id,(1,2)}, {id,(1,3)}, {Id,(2,3)}
are group-conjugate to each other in S3, so that the
corresponding intermediate extensions

Q(OQ), Q(Olz), Q(Oél)

are Galois-conjugate to each other.
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Example 3: Q(m)/@

Let L = Q(«), where o = /5 + V21, We know that
Gal(L/Q) ~ V4 acting on conjugates «, —«, 5 =2/, —f.

let oy :ax— —a, or:a— B, 03:a— —f.
As V, ~ (Z/27) x (Z/27Z), subgroup diagram

{ld}
2/ % \2
/
{ld,O‘l} {ld,O’Q} {ld,03}
2 % 2/
I /

Gal(L/Q).




Example 3: Q(m)/@

For i = 1,2,3, write H; = {Id, o;} and E; = L".
We have [E; : Q] =[G : H] =2, [L: E] =#H;, =2.

{Id} L
2/ % \2 2/%\2
. / AN
{'d.,O'l} {ld,O’Q} {'d,0'3} <~ E1 E2 E3
et \2\%//




Example 3: Q(v/5 + v21)/Q
011 a— —a fixes o? = 54 /21, so Q(a?) = Q(v/21) C £,
so E; = Q(+/21) by degree.

021> f3 fixes aff =2, so Q(af) = Q C E, useless; but o,
also fixes a + 3, and (a + 3)? = o? + 3? + 2a3 = 14, so
V1de B, so E, = Q(\/ﬁ) by degree.

031 a < —f3 fixes a — B; as (o — B)? = 6, E3 = Q(+/6).

/2/ {ls } \2\ /2/ i \2\
{ld,01}  {ld,ox}  {ld,o3} <= Q(W21) QW14  Q(6)
NG

\2 % 2/
Gal(L/Q) o

Gal(L/Q) Abelian ~ all subgroups normal ~~ all E Galois / Q.

We see | = Q(\/ﬁ, V14, \/6) Yet [L: Q] = 4 not 8; in fact,
any two generators suffice, e.g. V6 = @ € Q(\/ﬁ, \/ﬁ)
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Example 4: Q(m)/@

Let L = Q(«), where a« = \/5 V15.

We have Q C Q(+/15) C L, and o € Q(+/15) ~ [L : Q] = 4
~+ a has min poly (x> —5)? — 15 € Q[x] over Q

~+ o has conjugates +«, /3 over Q, where 3 = /5 — v/15.
This time, af = V10 ¢ Q, so not clear whether g € L.

Suppose € L. Then L/Q Galois, Gal(L/Q) of order 4, and
E = Q(/15) corresponds to a subgroup H = {Id, o’}

As a? =5++/15 € E, 0(a?) = a?, so o(a) = +a.

a g Elest L=E, soo(a)=—a.

Besides, o permutes +a, +7 injectively, so o(8) = £5.

If 0(8) = 5, then B € E, whereas [Q(5) : Q] = 4, absurd.
If 7(8) = —f, then v/10 = a8 € E = Q(+/15), absurd.

So g ¢ L.
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Example 4: Q(v/5 + v15)/Q
Since 8 ¢ L, L not Galois over Q; its Galois closure over Q is
N =Q(+a,£8) = L(B) 2 L.

As B2 =5—-15¢ L, [N:L]<2,s0[N:L]=2;
thus # Gal(N/Q) = [N : Q] = 8, subgroup of Sy O o, £0.

Gal(N/Q) preserves negatives, so preserves square

—a— B

e«
so contained in symmetry group Dg of the square.
But #Dg = 8, so Gal(N/Q) = Ds.



Example 4: Q(m)/@

Name the elements of Gal(N/Q):

/
N T /O'a
. ‘ @
N ! v
N | ,
N e
N | ,
N | s
N L
\\ \//
L R G
AN
’ l N
7 | \\
,
’ I N
s | \\
7/ | R
e
I
, ‘ Q
0p

meaning 0, : v = —, —a—= o, S B, == —=f
and p:a— f+— —a+— —f — q, etc.
The central symmetry is 0,03 = 030, =77 =77 = 0.
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Example 4: Q(m)/@

By Lagrange, possible subgroup orders 2 and 4.

#H =2~ H=Ald, v} ~7Z/27Z, ~ of order 2.

#H = 4 ~ either H = {Id,v,+?,73} ~ Z/47Z, ~ of order 4,
or H={ld, v,y , vy} ~(Z/2Z) x (Z/2Z), ~y and ~" of order
2 and commute.

~> Subgroup diagram:

2% % XQ\
{ld, o5} {ld, 0.} /{Id,pz}\ {Ild, 7} /{Id,T’}
Te SR S
{ld, 04,05, p*} {Id, p, p?, p*} {Id, 7, 7', p?}

\2 %
\ /
Gal(N/Q) ~ Ds
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Example 4: Q(m)/@

[
(1d, 05} (14,00} — (14, 2} \m (14,7}
\

2 l{ 2/ %
\ /
{ld, 04,05, p*} {ld, p, p?, p*} {id, 7,7, p*}
\2
Gal(N/Q) ~ Dg

Q(o?) = Q(F?) = @(\/E) Q(5 - £)=Q(ve) Q(eB) = Q(v/10)
\
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Example 4: Q(m)/@

The group-conjugates of o, are o, and o3, so the subgroups
{ld, 0.} and {ld, 0z} are not normal, and are conjugate to
each other (by p). Correspondingly, Q(/3) and Q(«) are not
Galois over Q, and are switched by p.

Similarly, {Id, 7} and {ld, 7'} are conjugate (by p again);
correspondingly, Q(a + 3) and Q(« — 3) are not Galois over
@, and are switched by p.

All the other subgroups are normal; correspondingly, all the
other subfields are Galois over Q.
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Application to cyclotomy




Complex N-th roots of unity

Fix N € N. Let (y = e*™/N ¢ C.

Definition (Root of 1)
A (complex) N-th root of unity is a z € C such that zN = 1.

These are the (f, k =0,1,--- ;N — 1. They form a subgroup
un of C*, isomorphic to Z/NZ by Z/NZ > k «— (X € un.

They have |z| = 1,50 z7! =Z.

Definition (Primitive root of 1)

z € uy is primitive if zM # 1 foral N> M < N.

Example (N=4)

The 4th roots of unity are 1 = (3, i = (4, —1 =2, —i = (.
Only i and —/ are primitive.
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Complex N-th roots of unlty

These are the (f, k =0,1,--- ;N — 1. They form a subgroup
wn of C*, isomorphic to Z/NZ by Z/NZ > k <+ (K € pn.
They have |z| = 1,50 z7! =Z.

Definition (Primitive root of 1)

z € py is primitive if zM # 1 foral N> M < N.

Example (N=4)

The 4th roots of unity are 1 = (3, i = (4, —1 =2, —i = (.
Only i and —/ are primitive.

Proposition

Cx is a primitive N-th root of 1 <= gcd(k, N) =1
< k € (Z/NZ)*.

Unofficial notation: 1.
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Cyclotomic polynomials

Let z € pun. Then z root of xV — 1 € Q[x], so algebraic / Q.
But xV — 1 is usually not the min poly!

Definition (Cyclotomic polynomial)

The N-th cyclotomic polynomial is

onx)= [[(x-2)= [ -

zep ke(Z/NZ)*

®n(x) € Z[x], and is irreducible over Q.

Proposition

xN—1= Hd)d(x).

d|N
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Cyclotomic polynomials

o (x) € Z[x], and is irreducible over Q.

X =1 — Hd)d(x).

d|N

For p € N prime, x? — 1 = ®1(x)®,(x) = (x — 1)®,(x)
> d)p(x):%:Xp_l_i_..._i_x_i_l_

9_1 9_1
Po(x) = — ~ . =0+ x° + 1.

O (X)Ps(x)  (x—1)(x2+x+1)




Cyclotomic extensions

Definition
The N-th cyclotomic extension is Q(Cn) = Q(un).

[Q(Cw) : Q] = deg Pn(x) = #up = #(Z/NZ)* = ¢(N).

Q(¢n) D v is splitting field / Q of xN — 1, and of dp(x)
~ Q(¢n)/Q is Galois.

Gal(Q(¢n)/Q) is canonically isomorphic to (Z/NZ)*.




Cyclotomic extensions

Gal(Q(¢n)/Q) is canonically isomorphic to (Z/NZ)*.

Let 0 € Gal(Q(¢n)/Q). Determined by o((y), which is a root
of ®p(x) ~~ at most ¢(n) choices ~~ all must occur.

For each k € (Z/NZ)*, let o : (v — (.

Then for any z € up, say z = (), we have

o(2) = oi(Ch) = ow(Cn) = (CKY = Gy = (Gu)* = 2~.
Therefore ojo = (z — zK — (2Y = Z¥) = 0. O

Complex conjugation is o_1 : z+ z71 = Z.
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Aside: Abelian extensions (NON-EXAMINABLE)

Definition (Abelian extension)

An Abelian extension is a Galois extension whose Galois group
is Abelian.

So cyclotomic fields are Abelian extensions of Q.

Suppose Q C E C Q(¢w).

Then E corresponds to H < G = Gal(Q(¢n)/Q).

Since G is Abelian, H is automatically normal; so E/Q is
Galois and Gal(E/Q) ~ G/H is still Abelian. Conversely,

Theorem (Kronecker-Weber)

If K is an Abelian extension of Q, then there exists N € N
such that K C Q(Cw).

For all n € Z, Q(v/n) € Q(4n)-




Example: N =9

Let L = Q({o), G = Gal(L/Q).

The min poly of (g is ®g(x) = x® + x> + 1.

We observe that (Z/9Z)* is cyclic, generated by 2.
7,/67 <=~ (L/97)* <=~ G

m 27 Oom
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Example: N =9

Let L = Q(Co), G = Gal(L/Q).

The min poly of (g is ®g(x) = x® + x> + 1.

We observe that (Z/9Z)* is cyclic, generated by 2.
7)67 <=~ (Z)9Z)* <=~ G

m 2m Oom
Subgroup diagram:

/
32,67 — {0.3} \

N 22}2 — {0,2,4)
&

Z./67.
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Example: N =9

Let L = Q(Co), G = Gal(L/Q).

The min poly of (g is ®g(x) = x® + x> + 1.

We observe that (Z/9Z)* is cyclic, generated by 2.
7)67 <=~ (1)97)" <> G

m 2m Oom
Subgroup diagram:
{1}

2/
{2021,23:—T} \3
\ \

Z/92)<.
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Example: N =9

Let L = Q((o), G = Gal(L/Q).

The min poly of (g is ®Pg(x) = x® + x> + 1.

We observe that (Z/9Z)* is cyclic, generated by 2.
Z)6Z <=~ (L/9L)* <>~ G

A m 2m Oom
Subgroup diagram:

{01 = |C|}

/
/2
H, = {ld,o_1} \3

N S

3 H3 = {Id70-470'72}
\ /2/
G.
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Example: N =9

{01 = Id}
H, = {|o|,al}/2 \3
\ \

H3—{|d 04,0 2}
N —

L3 ¢+ Cg + Cg = C9+49+1 = 0, useless.
But also L% 5 GoC3Gy™ = G = G, 50 Q(G5) L.

[Q(G) : Q] = ¢(3) =2 =[G : H3] = [L"™ : Q],
so L™ = Q((3).




Example: N =9

{0'1 |d}

2/ \
_—
3

H2 = {lda U—l}

["2 = [ N R since o_; is complex conjugation.

LM 5 (¢t =1and a = (o + (' = 2cos(27/9),
whose conjugates are a=o04(a),
= ous(a) = (5 + (g = 2cos(4m/9),
and fy = op4(a) = (§ + (5 * = 2cos(87/9).

a, 3,7 distinct, so a € L = Q, so Q € Q(a) C L.

[Q(«) : Q] = degg o = #conjs =3 =[G : Ho] = [L™ : Q]
~ L = Q(a) = Q(8) = Q).
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Example: N =9

{0’1 = |d}

/‘
/2
Hy, = {Id,o0_1} \3

Hy ={ld, 04,0 5}
\ o




Example: N =9

The min poly of o over Q is
P(x)= ] (x=c) =(x—a)(x=B)(x—7).

Its coefficients are combinations of powers of (g which lie in Q
~ fixed by G

~ symmetric in roots of ®g(x) = x® +x3 +1

~ computable by Vieta.

One finds P(x) = x> — 3x + 1.
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Other applications
(NON-EXAMINABLE)




Constructible numbers

Theorem (Wantzel)

o € R s constructible <= there exist fields
Q=EC---CE =Q(«)
such that [Ejq : Ej]) =2 for all .

« constructible = « alg. /Q and [Q(«) : Q] = power of 2.

Counter-example

Let o € R root of f(x) = x* — 8x® + 4x + 2 € Q[x].

f(x)irr / Q, so [Q(«) : Q] = 4; yet « not constructible!
Indeed, let N = Q(cv, - -, aa) where o roots of f(x). Then
G = Gal(N/Q) < S4, and Q(«) C N corresponds to G, < G.
It turns out that G = Sy, so G, = {ld} x S3 < S;. Since there
isno G, < H< G, thereisno Q C E C Q(«).
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Constructible numbers vs. 2-groups

Definition

Let p € N be prime. A p-group is a finite group G such that
#G is a power of p.

Proposition

If G is a p-group, then there exist
such that [H;1 : H;] = p for all j.

Let « € R alg./Q, and N = Galois closure of Q(«)/Q. Then

« is constructible <= Gal(N/Q) is a 2-group.
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Finiteness of subextensions

Proposition

If L/K is a finite separable extension,
then the number of K C E C L is finite.

Let N = normal closure of L/K. Then N/K is finite Galois,
so G = Gal(N/K) is finite, so there are finitely many H < G,
whence finitely many K C E C N. O
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A vector space lemma

Let K be a field, and V' a vector space over K.
IfV =Uj_, W, with W; C V subspaces, then K is finite.

WLOG there exists v € V' \ UJ:II W;, in particular v € W,.
Letalsoae V\W,, and L={a+ Av | A € K}.

lf p=a+AvelnW, thena=p— v e W,, absurd.
So LN W, = 0.

ltp=a+Av,g=a+puvelnW,forj<r, then
(W=Av=qg—peW,sop=qg~ #(LN W) <1

AsL=LNV=UL_(LNW), #K=#L<r—1 0
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The primitive element theorem

Theorem (Primitive element theorem)

Let L/K be a finite separable extension. There exists a
primitive element vy € L, i.e. such that L = K(v).

If K finite, OK. Suppose K infinite.
L =.,c, K(a). This is actually a finite union, since there are
finitely many K C E C L. Apply lemma. O]

v

Example

Q(v2,v3) = Q(v2+ V73)
= Q(xv2+ yV3) forall 0 # x,y € Q.
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An inseparable counterexample

Counter-example
Let L = k(s, t) where char k = p, and K = k(s", tP).
[L: K] = p? because K C k(s,tP) = K(s) C L.

Forall « = f(s,t) € L, a= aP = Froba € kP(sP, tP) C K,
so a root of x? —a € K[x], so [K(a) : K] < p,so L D K(«).

For X € k, let Ey = K(s+ At). If Ex = E, for A # p, then
s+ ut € K(s+ At), so t = (sﬂ"’z# € K(s+ At) and
s=(s+At) = At € K(s+ At), so L = K(s,t) = K(s + At),
absurd.

~ If #k = 00, e.g. k =F,(u), that's oo many K C E, C L.
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