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More about automorphisms
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Bad ways to specify an automorphism

Let K ⊆ L be a field extension. How to describe σ ∈ AutK (L)?

Example

Take K = Q ⊂ L = Q(
√

2).
Because L 'Q Q[x ]/(x2 − 2) 'Q Q(−

√
2) = L, we have

σ :
L −→ L

a + b
√

2 7−→ a − b
√

2
.

This σ takes (1−
√

2)n → 0 to (1 +
√

2)n → +∞, so it is not
continuous at all!
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Bad ways to specify an automorphism

Let K ⊆ L be a field extension. How to describe σ ∈ AutK (L)?

Remark

σ is a K -automorphism ⇐⇒ σ is K -linear: σ(kx) = kσ(x) for
k ∈ K , x ∈ L.

 if [L : K ] <∞, we could fix a K -basis of L, and write down
the matrix of σ.

But there is a much better way!
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Good way to specify an automorphism

Lemma

Suppose L = K (α1, · · · , αr ). Any σ ∈ AutK (L) is completely
determined by σ(α1), · · · , σ(αr ).

Proof.

Every x ∈ L is of the form x =

∑
j1,··· ,jr

aj1,··· ,jrα
j1
1 · · ·αjr

r∑
j1,··· ,jr

bj1,··· ,jrα
j1
1 · · ·αjr

r

where ai1,··· ,ir , bi1,··· ,ir ∈ K

 σ(x) =

∑
j1,··· ,jr

σ(aj1,··· ,jr )σ(αj1
1 · · ·αjr

r )∑
j1,··· ,jr

σ(bj1,··· ,jr )σ(αj1
1 · · ·αjr

r )
=

∑
j1,··· ,jr

aj1,··· ,jrσ(α1)j1 · · ·σ(αr )
jr

∑
j1,··· ,jr

bj1,··· ,jrσ(α1)j1 · · ·σ(αr )
jr

determined by the values σ(α1), · · · , σ(αr ).
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Good way to specify an automorphism

Lemma

Suppose L = K (α1, · · · , αr ). Any σ ∈ AutK (L) is completely
determined by σ(α1), · · · , σ(αr ).

Example

σ ∈ AutQ
(
Q(
√

2)
)

is determined by σ(
√

2).

σ ∈ AutQ
(
Q(
√

2,
√

3)
)

is determined by
(
σ(
√

2), σ(
√

3)
)
.
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Good way to specify an automorphism

Lemma

Suppose L = K (α1, · · · , αr ). Any σ ∈ AutK (L) is completely
determined by σ(α1), · · · , σ(αr ).

Remark

K -automorphisms take roots of F (x) ∈ K [x ] to roots
of F (x) ∈ K [x ]
 for each j , they take αj to a conjugate of αj .

Example

σ ∈ AutQ
(
Q(
√

2)
)
 σ(

√
2) = ±

√
2.

σ ∈ AutQ
(
Q(
√

2,
√

3)
)
 σ(

√
2) = ±

√
2, σ(

√
3) = ±

√
3.

σ ∈ AutQ
(
Q( 3
√

2)
)
 σ( 3

√
2) root of x3 − 2.

But σ( 3
√

2) ∈ Q( 3
√

2) ⊂ R, so σ( 3
√

2) = 3
√

2, so σ = Id.
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Overview of the Galois correspondence

Let K = Q, L = Q(
√

2,
√

3), and G = AutK (L).
We admit that G = 〈σ2, σ3〉 ' Z/2Z× Z/2Z, where

σ2(
√

2) = −
√

2, σ2(
√

3) =
√

3,

σ3(
√

2) =
√

2, σ3(
√

3) = −
√

3.

Reminder: if H ⊆ AutQ(L), then

LH = {x ∈ L | σ(x) = x for all σ ∈ H}

is a subfield of L containing Q.

H = {Id, σ2} LH = Q(
√

3).
H = {Id, σ3} LH = Q(

√
2).

H = G  LH = Q.
H = {Id} LH = L.
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Overview of the Galois correspondence
Let K = Q, L = Q(

√
2,
√

3), and G = AutK (L).
We admit that G = 〈σ2, σ3〉 ' Z/2Z× Z/2Z, where

σ2(
√

2) = −
√

2, σ2(
√

3) =
√

3,

σ3(
√

2) =
√

2, σ3(
√

3) = −
√

3.

 Galois correspondence

subgroups H 6 G ←→ intermediate extensions K ⊆ E ⊆ L
H 7−→ LH

AutE (L) ←− [ E

{Id} Q(
√

2,
√

3)

{Id, σ3}

⊂

{Id, σ2}

⊂
←→ Q(

√
2)

⊂
Q(
√

3)

⊂

G

⊂ ⊂

Q
⊂ ⊂
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√
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√
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{Id, σ2σ3}

⊂
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⊂
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√
2)

⊂
?
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Q(
√

3)

⊂

G
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Q

⊂ ⊂⊂
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But it can go very wrong!

Counter-example

Take K = Q, L = Q( 3
√

2). Then AutK (L) = {Id}

L

{Id} ??? ∪

K

 We need the presence of automorphisms to make the
Galois correspondence work.
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Separable extensions

Nicolas Mascot Galois theory



Separability

Definition (Separable element, separable extension)

Let K ⊆ L be an algebraic extension, and let α ∈ L.

1 α is separable over K if its minimal polynomial over K is
separable (disc 6= 0).

2 The extension K ⊆ L is separable if all the elements of L
are separable over K .

Bad things can happen in characteristic p!
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Separability

Definition (Separable element, separable extension)

Let K ⊆ L be an algebraic extension, and let α ∈ L.

1 α is separable over K if its minimal polynomial over K is
separable (disc 6= 0).

2 The extension K ⊆ L is separable if all the elements of L
are separable over K .

Bad things can happen in characteristic p!
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Factorisation of xp − a in characteristic p

Lemma (Factorisation of xp − a in characteristic p)

Let charK = p, a ∈ K, and F (x) = xp − a ∈ K [x ].

1 If there exists b ∈ K such that a = bp, then the
factorisation of F (x) in K [x ] is F (x) = (x − b)p.

2 Else, F (x) is irreducible in K [x ].

Proof.

If a = bp, then F (x) = xp − bp = (x − b)p.

Conversely, let β ∈ K be a root of F (x), so βp = a. Then
F (x) = (x − β)p ∈ K [x ]. Suppose F (x) reducible over K , and
let G (x) ∈ K [x ] be a nontrivial factor. Then

G (x) = (x − β)d = xd − dβxd−1 + · · ·
with 0 < d = degG < p, so dβ ∈ K .
But 0 6= d ∈ K , so β ∈ K .

Notation: K p = {kp | k ∈ K} = Im Frob.
Nicolas Mascot Galois theory



An example of inseparability

Counter-example

Let K = Fp(t) be the rational fraction field over Fp.
Observe that K p = Frob(K ) = Fp(tp), so t 6∈ K p,
 F (x) = xp − t ∈ K [x ] is irreducible.

Consider stem field L = Fp(t1/p) = Fp(u), u = t1/p.
Then F (u) = 0, so u algebraic / K with min poly F (x).
But in L[x ], F (x) = (x − u)p  inseparable!

Besides, for all σ ∈ AutK (L), σ(u) root of F (x) ∈ K [x ]
 σ(u) = u  AutK (L) = {Id}, bad for Galois!

Remark

Squarefree-ness of a polynomial depends on the ground field!
Separability does not, because it is detected by disc 6= 0.
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Shape of inseparable irreducible polynomials

Lemma

Let P(x) ∈ K [x ] irreducible and inseparable. Then P ′(x) = 0.

Proof.

0 = discP ∼ Res(P ,P ′), so P and P ′ have a common factor,
which can only be P since P is irreducible.
But degP ′ < degP , so P | P ′ =⇒ P ′ = 0.
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Shape of inseparable irreducible polynomials

Lemma

Let P(x) ∈ K [x ] irreducible and inseparable. Then P ′(x) = 0.

Proposition

Let charK = p, and P(x) ∈ K [x ] irreducible in K [x ]. TFAE:

1 P(x) is inseparable,

2 P ′(x) = 0,

3 P(x) = Q(xp) for some Q(x) ∈ K [x ].

Proof.

1⇒ 2: By lemma.
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Shape of inseparable irreducible polynomials

Proposition

Let charK = p, and P(x) ∈ K [x ] irreducible in K [x ]. TFAE:

1 P(x) is inseparable,

2 P ′(x) = 0,

3 P(x) = Q(xp) for some Q(x) ∈ K [x ].

Proof.

1⇒ 2: By lemma.

2⇒ 3: Write P(x) =
∑

j ajx
j . Then 0 = P ′(x) =

∑
j jajx

j−1,
so jaj = 0 for all j , so aj = 0 unless j = 0 in K , that is
unless p | j .

3⇒ 1: If P(x) = Q(xp), then P ′(x) = pxp−1Q ′(xp) = 0 as
p = 0, so gcd(P ,P ′) = P .
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Perfect fields

Definition

A field is perfect if it has no inseparable extension.

Theorem
1 If charK = 0, then K is perfect.

2 If charK = p, then K is perfect ⇐⇒ K p = K.

Remark

If charK = p, then K perfect ⇐⇒ Frob ∈ Aut(K ).
In particular, finite fields are perfect, even though they have
char > 0.
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Perfect fields

Theorem
1 If charK = 0, then K is perfect.

2 If charK = p, then K is perfect ⇐⇒ K p = K.

Proof.

Suppose K not perfect. Then we can find K ⊆ L inseparable,
meaning there is α ∈ L whose min poly P(x) ∈ K [x ] is
inseparable, so has common factor with P ′  P ′ = 0.

If charK = 0, then degP ′ = degP − 1, absurd.

If charK = p and K p = K , then Frob ∈ Aut(K ), so
every a ∈ K has a (unique) p-th root a1/p = Frob−1(a) ∈ K .
We know P(x) = Q(xp), say P(x) =

∑
j ajx

pj . But then

P(x) =
∑

j(a
1/p
j )p(x j)p =

(∑
j a

1/p
j x j

)p
not irreducible,

absurd.
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Perfect fields

Theorem
1 If charK = 0, then K is perfect.

2 If charK = p, then K is perfect ⇐⇒ K p = K.

Proof.

Conversely, if charK = p and K p ( K , let a ∈ K \ K p;
then P(x) = xp − a ∈ K [x ] is irreducible, and inseparable
since P ′(x) = 0, so L = K [x ]/

(
P(x)

)
' K ( p

√
a) is an

inseparable extension of K .
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Separability vs. embeddings
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Preservation of separability

Proposition

Let K ⊆ E ⊆ L. If K ⊆ L separable, then K ⊆ E and E ⊆ L
separable.

Proof.

K ⊆ E : If α ∈ E , then α ∈ L, so α separable over K .

E ⊆ L: Let α ∈ L have min poly PK (x) ∈ K [x ] over K and
PE (x) ∈ E [x ] over E . Then PE (x) | PK (x) which is
separable, so PE (x) cannot have multiple roots in any
extension of E .
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Embeddings vs. roots

Let K be a field, and let L,M be extensions of K .
A field morphism f : L −→ M is automatically injective, hence
an embedding: L ' Im f ⊆ M .

Suppose that L = K [x ]/
(
P(x)

)
with P(x) ∈ K [x ] irreducible,

and let α = x ∈ L.

If f is a K -morphism, then f (α) ∈ M is a root of P(x).

Conversely, if β ∈ M is a root of P(x), then

K [x ]

����

evβ //M .

L = K [x ]/
(
P(x)

)* 


88

 K -embeddings of L in M ←→ Roots of P(x) in M .
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Extensions of embeddings vs. roots

Let L = K [x ]/
(
P(x)

)
with P(x) =

∑
j ajx

j ∈ K [x ] irreducible,
and as previously α = x ∈ L.
Let also ι : K ↪→ M , and Pι(x) =

∑
j ι(aj)x

j ∈ M[x ].

We have K
ι' ι(K ), so Pι(x) is irreducible over ι(K ).

L ? //M

K ι
∼ // ι(K )

Suppose ι′ : L −→ M extends ι. Then

0 = ι′(P(α)) =
∑
j

ι′(aj)ι
′(α)j = Pι

(
ι′(α)

)
.
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Extensions of embeddings vs. roots

Let L = K [x ]/
(
P(x)

)
with P(x) =

∑
j ajx

j ∈ K [x ] irreducible,
and as previously α = x ∈ L.
Let also ι : K ↪→ M , and Pι(x) =

∑
j ι(aj)x

j ∈ M[x ].

We have K
ι' ι(K ), so Pι(x) is irreducible over ι(K ).

Suppose ι′ : L −→ M extends ι. Then

0 = ι′(P(α)) =
∑
j

ι′(aj)ι
′(α)j = Pι

(
ι′(α)

)
.

Conversely, if β ∈ M is a root of Pι(x), then

K [x ]

����

∼ // ι(K )[x ]
evβ //M .

L = K [x ]/
(
P(x)

)& �
33

 Extensions of ι to L ←→ Roots of Pι(x) in M .
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Separability by counting embeddings

Theorem

Let K be a field, let Ω be an algebraically closed extension
of K (e.g. Ω = K), and let L be a finite extension of K .
Then HomK (L,Ω) is finite, and N = # HomK (L,Ω) is
independent of Ω and satisfies

1 6 N 6 [L : K ],

with equality N = [L : K ] ⇐⇒ K ⊆ L is separable.

Ω

L

77 77
77

K
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Separability by counting embeddings

Theorem

Let ι : K ↪→ Ω with Ω algebraically closed, and let L be a
finite extension of K .
Then the set Homι(L,Ω) of embeddings L ↪→ Ω extending ι is
finite, and N = # Homι(L,Ω) is independent of Ω and satisfies

1 6 N 6 [L : K ],

with equality N = [L : K ] ⇐⇒ K ⊆ L is separable.

Ω

L

<< <<
<<

K ι
∼ // ι(K )
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Separability by counting embeddings

Proof.

Write L = K (α1, · · · , αr ). Induction on r to prove that
1 6 N 6 [L : K ] and N = [L : K ] if K ⊆ L separable.

If r = 0, then K = L, so Homι(L,Ω) = {ι}, OK.

Suppose true for r − 1.
Let E = K (α1, · · · , αr−1), so L = E (αr ).
Then NE = # Homι(E ,Ω) satisfies 1 6 NE 6 [E : K ], so let

ιE ∈ Homι(E ,Ω). Besides [L : E ] = [L:K ]
[E :K ]

<∞, so let

P(x) ∈ E [x ] min poly of αr . As L 'E E [x ]/
(
P(x)

)
, the

number NιE of ι′ : L ↪→ Ω extending ιE is

NιE = # Roots of PιE (x) in Ω 6 degPιE = degP = [L : E ],

whence N 6 NE [L : E ] 6 [E : K ][L : E ] = [L : K ].
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Separability by counting embeddings

Proof.

Suppose true for r − 1.
Let E = K (α1, · · · , αr−1), so L = E (αr ).
Then NE = # Homι(E ,Ω) satisfies 1 6 NE 6 [E : K ], so let

ιE ∈ Homι(E ,Ω). Besides [L : E ] = [L:K ]
[E :K ]

<∞, so let

P(x) ∈ E [x ] min poly of αr . As L 'E E [x ]/
(
P(x)

)
, the

number NιE of ι′ : L ↪→ Ω extending ιE is

NιE = # Roots of PιE (x) in Ω 6 degPιE = degP = [L : E ],

whence N 6 NE [L : E ] 6 [E : K ][L : E ] = [L : K ].

If furthermore K ⊆ L is separable, then so are K ⊆ E ⊆ L,
so NE = [E : K ] by induction and NιE = [L : E ] for all
ιE ∈ Homι(E ,Ω) as discPιE = ιE (discP) 6= 0.
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Separability by counting embeddings

Proof.

If on the contrary K ⊆ L is inseparable, write
L = K (α1, · · · , αr ) with α1 inseparable over K .
Let K1 = K (α1), so that K1 'K K [x ]/

(
Q(x)

)
where

Q(x) ∈ K [x ] is the min poly of α1 over K .
Then discQι = ι(discQ) = ι(0) = 0, so

# Homι

(
K1,Ω) = #Roots of Qι in Ω < degQ = [K1 : K ]

 # Homι(L,Ω) < [K1 : K ][L : K1] = [L : K ].
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Separability by counting embeddings

Corollary

Let K ⊆ L ⊆ M be finite extensions. Then K ⊆ M is
separable iff. K ⊆ L and L ⊆ M are separable.

Proof.

# HomK (M ,Ω) =
∑

ι∈HomK (L,Ω)

# Homι(M ,Ω).

Ω

M

22

L

99

K
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Interlude : group actions
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Reminder: Group actions

Definition

Let G be a group with identity 1G ∈ G, and let X be a set.
A left action of G on X is a map

G × X −→ X
(g , x) 7−→ g · x

such that g · h · x = gh · x and 1G · x = x for all g , h ∈ G
and x ∈ X.

In other words, it is a group morphism from G to the group of
bijections from X to itself.

Notation: G � X .
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Reminder: Group actions

Definition

Let G be a group with identity 1G ∈ G, and let X be a set.
A right action of G on X is a map

X × G −→ X
(x , g) 7−→ x · g

such that x · g · h = x · gh and x · 1G = x for all g , h ∈ G
and x ∈ X.

In other words, it is a group “anti-morphism”,
i.e. φ(gh) = φ(h)φ(g), from G to the group of bijections
from X to itself.

Notation: X 	 G .
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Reminder: Group actions

Definition

Let G be a group with identity 1G ∈ G, and let X be a set.
A left action of G on X is a map

G × X −→ X
(g , x) 7−→ g · x

such that g · h · x = gh · x and 1G · x = x for all g , h ∈ G
and x ∈ X.

In other words, it is a group morphism from G to the group of
bijections from X to itself.

Example

A Rubik’s cube is not a group, but rather a set of
configurations acted on by a group of rotations of the faces.
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Transitivity and freedom

Definition

Let x ∈ X. The orbit of x is G · x = {g · x | g ∈ G} ⊆ X.
The stabiliser Gx of x is {g ∈ G | g · x = x} 6 G.

The action is transitive if for all x , y ∈ X, there exists g ∈ G
such that g · x = y , i.e. if there is only one orbit.

The action is free if for all x ∈ X and g ∈ G,
g · x = x =⇒ g = 1G .

Example

The action of the group of motions on the set of
configurations of a Rubik’s cube is free. It is transitive iff. we
only include the configurations of the cube that are reachable
without taking the cube apart.
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Normal extensions
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Normal extensions

Let K be a field, L a finite extension of K , and Ω an
algebraically closed extension of K .

AutK (L) acts on HomK (L,Ω) on the right by

ι · σ = ι ◦ σ
(
ι ∈ HomK (L,Ω), σ ∈ AutK (L)

)
.

This action is free: ι ◦ σ = ι =⇒ σ = Id since ι is injective.

 # AutK (L) 6 # HomK (L,Ω).

Definition (Normal extension)

The extension K ⊆ L is normal if

# AutK (L) = # HomK (L,Ω).
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Normal extensions

Definition (Normal extension)

The extension K ⊆ L is normal if

# AutK (L) = # HomK (L,Ω).

Counter-example

Take K = Q ⊂ L = Q( 3
√

2) 'Q Q[x ]/(x3 − 2).

Since char = 0, this extension is separable, so
# HomK (L,C) = [L : K ] = 3.

However, # AutK (L) = #{Id} = 1 < 3, so this extension is
not normal.
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Characterisation of normal extensions

Theorem

Let K ⊆ L be a finite extension. TFAE:

1 The extension K ⊆ L is normal,

2 The action of AutK (L) on HomK (L,Ω) is transitive,

3 The elements of HomK (L,Ω) all have the same image,

4 Whenever an irreducible P(x) ∈ K [x ] has a root in L, it
splits into linear factors over L,

5 L is a splitting field over K of some F (x) ∈ K [x ].
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Characterisation of normal extensions

Counter-example

Take K = Q ⊂ L = Q[x ]/(x3 − 2) 'K Q( 3
√

2).

1 The extension K ⊆ L is not normal.

2 AutK (L) = {Id} cannot act transitively on HomK (L,C).

3 The 3 elements of HomK (L,C) have images Q( 3
√

2) ⊂ R,
Q(ζ3

3
√

2) 6⊂ R, Q(ζ2
3

3
√

2) 6⊂ R, where ζ3 = e2πi/3.

4 P(x) = x3 − 2 ∈ K [x ] is irreducible over K and has a root
in L, but only factors as 1 + 2 over L.

5 L is not the splitting field of x3 − 2 over K .
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Characterisation of normal extensions

Theorem

1 The extension K ⊆ L is normal,

2 The action of AutK (L) on HomK (L,Ω) is transitive,

3 The elements of HomK (L,Ω) all have the same image,

Proof.

1⇔ 2: Clear.

2⇒ 3: Let ι1, ι2 ∈ HomK (L,Ω). Then ι2 = ι1 ◦ σ for some
σ ∈ AutK (L), so ι1 = ι2 ◦ σ−1, so Im ι1 = Im ι2.

3⇒ 2: Let ι1, ι2 ∈ HomK (L,Ω). Then

L ∼
ι2
// Im(ι2) = Im(ι1) L∼

ι1
oo

so σ = ι−1
1 ◦ ι2 ∈ AutK (L) satisfies ι2 = ι1 ◦ σ.
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Characterisation of normal extensions
Theorem

3 The elements of HomK (L,Ω) all have the same image,

4 Whenever an irreducible P(x) ∈ K [x ] has a root in L, it
splits into linear factors over L,

Proof.

3⇒ 4: Let ι ∈ HomK (L,Ω), I = Im ι ⊆ Ω. Let P(x) ∈ K [x ]
irreducible have a root in L  root β ∈ I . WTP that
if γ ∈ Ω is another root of P(x), then γ ∈ I .
Write L = K (α1, · · · , αr ), let 0 6= F (x) ∈ K [x ] such
that F (αj) = 0 for all j , and let S ⊆ Ω be the splitting
field of P(x)F (x). Then F

(
ι(αj)

)
= 0 for all j , so

I = K
(
ι(α1), · · · , ι(αr )

)
⊆ S .

S is a splitting field and β, γ ∈ S are K -conjugate
 γ = Φ(β) for some Φ ∈ AutK (S). But then
γ ∈ Φ(I ) = Im Φ ◦ ι = I since Φ ◦ ι ∈ HomK (L,Ω).
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Characterisation of normal extensions

Theorem

3 The elements of HomK (L,Ω) all have the same image,

4 Whenever an irreducible P(x) ∈ K [x ] has a root in L, it
splits into linear factors over L,

5 L is a splitting field over K of some F (x) ∈ K [x ].

Proof.

4⇒ 5: Write again L = K (α1, · · · , αr ). Let Pj(x) ∈ K [x ] min
poly of αj , let F (x) =

∏
j Pj(x) ∈ K [x ], and let S ⊆ L

be the splitting of F (x) over K . Then L ⊆ S ; but
since the Pj(x) have all their roots in L, S ⊆ L.

5⇒ 3: If L is the splitting field of F (x) ∈ K [x ], then for
any ι ∈ HomK (L,Ω), ι(L) ⊆ Ω is the splitting field
of F (x) contained in Ω.
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Normal closure

Corollary

Let K ⊆ L finite. There exists a minimal finite L ⊆ N such
that K ⊆ N normal. This N is unique up to K-isomorphism.

Proof.

Again write L = K (α1, · · · , αr ) and let Pj(x) ∈ K [x ] min poly
of αj . Then N is a splitting field of

∏
j Pj(x).

Definition (Normal closure)

This N is the normal closure of K ⊆ L.

Example

The normal closure of K = Q ⊆ L = Q( 3
√

2) is
N = Q( 3

√
2, ζ3

3
√

2, ζ2
3

3
√

2) = L(ζ3), where ζ3 = e2πi/3.
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Galois extensions
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Galois extensions

Let K be a field, and Ω ⊇ K algebraically closed. We have
proved that if K ⊆ L finite, then

# AutK (L) 6
Normal?

# HomK (L,Ω) 6
Separable?

[L : K ].

Definition (Galois extension)

A finite extension K ⊆ L is Galois if

# AutK (L) = [L : K ].
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Characterisation of Galois extensions

Theorem

Let K ⊆ L be a finite extension. TFAE:

1 K ⊆ L is Galois,

2 K ⊆ L is normal and separable,

3 L = splitting field over K of some separable F (x) ∈ K [x ],

4 For all α ∈ L, we have α ∈ K ⇐⇒ σ(α) = α ∀σ ∈ AutK (L);
in other words, K ⊆ LAutK (L) is actually an equality,

5 The min poly over K of any α ∈ L is
∏

β∈AutK (L)·α

(x − β),

where AutK (L) · α = {σ(α) | σ ∈ AutK (L)} without
multiplicities.
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Characterisation of Galois extensions

Counter-example

Take K = Q, L = Q( 3
√

2)  AutK (L) = {Id}.
1 # AutK (L) = 1 < 3 = [L : K ].

2 K ⊆ L is not normal.

3 K ⊆ L is not the splitting field of x3 − 2 over K ,

4 3
√

2 ∈ L is fixed by all the elements of AutK (L) = {Id}, yet
does not lie in K ,

5 The min poly over K of 3
√

2 ∈ L is not∏
β∈AutK (L)· 3√2

(x − β) = x − 3
√

2.
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Characterisation of Galois extensions

Counter-example

Take K = Fp(t), L = Fp(t1/p)  AutK (L) = {Id}.
1 # AutK (L) = 1 < p = [L : K ].

2 K ⊆ L is not separable.

3 K ⊆ L is the splitting field of xp − t = (x − t1/p)p over K
but this polynomial is not separable,

4 t1/p ∈ L is fixed by all the elements of AutK (L) = {Id}, yet
does not lie in K ,

5 The min poly over K of t1/p ∈ L is not∏
β∈AutK (L)·t1/p

(x − β) = x − t1/p.
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Characterisation of Galois extensions

Theorem

1 K ⊆ L is Galois,

2 K ⊆ L is normal and separable,

3 L = splitting field over K of some separable F (x) ∈ K [x ],

Proof.

1⇔ 2: Clear.

2⇒ 3: K ⊆ L normal  splitting field of some F (x) ∈ K [x ].
For each root α ∈ L of F (x), let Pα(x) be its min
poly. Then Pα(x) separable, so
K [x ] 3 G (x) =

∏
distinct Pα(x) too, and K ⊆ L is its

splitting field.

3⇒ 2: Splitting fields are normal. A splitting field of a
separable polynomial is obtained as a succession of
separable extensions, so is separable.
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Characterisation of Galois extensions

Theorem

1 K ⊆ L is Galois,

4 For all α ∈ L, we have α ∈ K ⇐⇒ σ(α) = α ∀σ ∈ AutK (L),

5 The min poly over K of any α ∈ L is
∏

β∈AutK (L)·α

(x − β).

Proof.

1⇒ 4: Let K ⊆ E = LAutK (L) ⊆ L, so AutK (L) = AutE (L).
Then [L : K ] = # AutK (L) = # AutE (L) 6 [L : E ]

 [E : K ] = [L:K ]
[L:E ]
6 1.

4⇒ 5: Fα(x) =
∏

β∈AutK (L)·α

(x − β) ∈ L[x ] has α as a root, and

coefficients in LAutK (L) = K . Conversely, every β must
be a root of the min poly of α over K .
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Characterisation of Galois extensions

Theorem

2 K ⊆ L is normal and separable,

5 The min poly over K of any α ∈ L is
∏

β∈AutK (L)·α

(x − β).

Proof.

5⇒ 2: Let α ∈ L; its min poly is Fα(x) =
∏

β∈AutK (L)·α

(x − β),

which has distinct roots  K ⊆ L separable. Now
suppose P(x) ∈ K [x ] irreducible has a root α ∈ L;
then P(x) is the min poly of α  P(x) = Fα(x) has
all its roots in L.
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Characterisation of Galois extensions

Theorem

1 K ⊆ L is Galois,

2 K ⊆ L is normal and separable,

3 L = splitting field over K of some separable F (x) ∈ K [x ],

4 For all α ∈ L, we have α ∈ K ⇐⇒ σ(α) = α ∀σ ∈ AutK (L),

5 The min poly over K of any α ∈ L is
∏

β∈AutK (L)·α

(x − β).

Proof.

1 ks +3

��

2
�%
3\d

4 +3 5

KS
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Characterisation of Galois extensions

Theorem

1 K ⊆ L is Galois,

2 K ⊆ L is normal and separable,

3 L = splitting field over K of some separable F (x) ∈ K [x ],

4 For all α ∈ L, we have α ∈ K ⇐⇒ σ(α) = α ∀σ ∈ AutK (L),

5 The min poly over K of any α ∈ L is
∏

β∈AutK (L)·α

(x − β).

Remark

The main obstruction to Galois-ness is often normal-ness
rather than separability (e.g. in char 0).

If K ⊆ L is separable but not normal, its the normal closure N
is still separable over K , so K ⊆ N is Galois over K . It is
therefore sometimes called the Galois closure of K ⊆ L.
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Galois groups
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The Galois group of a Galois extension

From now on, we write L/K rather than K ⊆ L.

Definition (Galois group)

The Galois group of a Galois extension L/K is

Gal(L/K ) = AutK (L).

Example

Gal(C/R) = {Id, z 7→ z} ' Z/2Z.
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Determination of the Galois group

Let L/K be a Galois extension.

# Gal(L/K ) = [L : K ].

For all α ∈ L, the minimal polynomial P(x) of α over K
has all its roots in L; and whenever β, γ ∈ L are roots of
P(x), there exists σ ∈ Gal(L/K ) such that σ(β) = γ.

The elements of Gal(L/K ) are automorphisms
 they preserve algebraic relations over K ,
e.g. if σ ∈ Gal(L/K ) and if α ∈ L satisfies F (α) = 0
where F (x) ∈ K [x ], then F

(
σ(α)

)
= 0 as well.
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Example 1: Q(
√

2)/Q

Let K = Q and L = Q(
√

2).

Since both ±
√

2 ∈ L, L is the splitting field of separable
x2 − 2 ∈ Q[x ] over Q  L is Galois over Q.

Let G = Gal(L/Q). We have #G = [L : Q] = 2.
Id ∈ G  need one other σ ∈ Gal(L/Q),
G = {Id, σ} ' Z/2Z.

Any τ ∈ G is completely determined by τ(
√

2),
and τ(

√
2) = ±

√
2  2 possibilities.

#G = 2, so both must occur  σ(
√

2) = −
√

2,
so σ is a + b

√
2 7→ a − b

√
2 (a, b ∈ Q).

Nicolas Mascot Galois theory



Example 1: Q(
√

2)/Q

Let K = Q and L = Q(
√

2).

Since both ±
√

2 ∈ L, L is the splitting field of separable
x2 − 2 ∈ Q[x ] over Q  L is Galois over Q.

Let G = Gal(L/Q). We have #G = [L : Q] = 2.
Id ∈ G  need one other σ ∈ Gal(L/Q),
G = {Id, σ} ' Z/2Z.

Alternatively, there must exist τ ∈ G taking
√

2 to its
conjugate −

√
2.
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Example 2: Q(
√

2,
√

3)/Q
Let K = Q and L = Q(

√
2,
√

3).

Since both ±
√

2 and both ±
√

3 ∈ L, L is the splitting
field of separable (x2 − 2)(x2 − 3) ∈ Q[x ] over Q
 L is Galois over Q. Let G = Gal(L/Q).

Q ⊂ Q(
√

2) ⊂ L, so [L : Q] = [L : Q(
√

2)][Q(
√

2) : Q]
where [Q(

√
2) : Q] = 2 and [L : Q(

√
2)] 6 2.

If [L : Q(
√

2)] < 2, then Q(
√

2) = L 3
√

3,
so
√

3 = a + b
√

2 for some a, b ∈ Q.
Then 3 = (a + b

√
2)2 = (a2 + 2b2) + 2ab

√
2,

so a2 + 2b2 = 3 and 2ab = 0, absurd.
So [L : Q(

√
2)] = 2, so #G = [L : Q] = 4.

Any τ ∈ G is completely determined by τ(
√

2) = ±
√

2
and τ(

√
3) = ±

√
3  2× 2 = 4 possibilites.

#G = 4  all 4 possibilities occur.
So G ' {+,−} × {+,−} ' (Z/2Z)× (Z/2Z).
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Example 2: Q(
√

2,
√

3)/Q
Let K = Q and L = Q(

√
2,
√

3).

Q ⊂ Q(
√

2) ⊂ L, so [L : Q] = [L : Q(
√

2)][Q(
√

2) : Q]
where [Q(

√
2) : Q] = 2 and [L : Q(

√
2)] 6 2.

If [L : Q(
√

2)] < 2, then Q(
√

2) = L 3
√

3,
so
√

3 = a + b
√

2 for some a, b ∈ Q.
Then 3 = (a + b

√
2)2 = (a2 + 2b2) + 2ab

√
2,

so a2 + 2b2 = 3 and 2ab = 0, absurd.
So [L : Q(

√
2)] = 2, so #G = [L : Q] = 4.

Alternatively, there must exist τ2 ∈ G taking
√

2 to −
√

2,
and τ3 taking

√
3 to −

√
3. But can we do both

simultaneously? E.g. can we move
√

2 but fix
√

3?
L = splitting field of x2 − 3 over Q(

√
2)  any element

of Gal(Q(
√

2)/Q) extends to an element of Gal(L/Q).
Besides, L/Q(

√
2) Galois, and Gal

(
L/Q(

√
2)
)
' Z/2Z,

so we can move
√

3 as we want without touching
√

2.
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Example 3: Q( 3
√

2)/Q
Let K = Q and L = Q( 3

√
2). Let α1 = 3

√
2, α2 = ζ3

3
√

2,
α3 = ζ2

3
3
√

2 be the complex roots of F (x) = x3 − 2 ∈ Q[x ],
where ζ3 = e2πi/3.

L/Q is not Galois! So we consider its Galois closure
N = Q(α1, α2, α3). Let G = Gal(N/Q); we have
#G = [N : Q] = [N : L][L : Q] > 2× 3 = 6.
Any σ ∈ G must take a root of F (x) ∈ Q[x ] to a root of
F (x), and is completely characterised by how it permutes
α1, α2, α3  we can view G as a subgroup of S3

permuting α1, α2, α3.
Since #G ≥ 6, necessarily G = S3.

Remark

If L = splitting field over K of F (x) ∈ K [x ] separable of
degree d , then Gal(L/K ) can, and should, be thought of as a
subgroup of Sd permuting the d roots of F (x) in L.
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Example 3: Q( 3
√

2)/Q
Let K = Q and L = Q( 3

√
2). Let α1 = 3

√
2, α2 = ζ3

3
√

2,
α3 = ζ2

3
3
√

2 be the complex roots of F (x) = x3 − 2 ∈ Q[x ],
where ζ3 = e2πi/3.

L/Q is not Galois! So we consider its Galois closure
N = Q(α1, α2, α3). Let G = Gal(N/Q); we have
#G = [N : Q] = [N : L][L : Q] > 2× 3 = 6.

Any σ ∈ G must take a root of F (x) ∈ Q[x ] to a root of
F (x), and is completely characterised by how it permutes
α1, α2, α3  we can view G as a subgroup of S3

permuting α1, α2, α3.

Since #G ≥ 6, necessarily G = S3.

Remark

The Galois group does NOT preserve real-ness!

In other words, R is NOT normal over Q!
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Example 4: Q(
√

5 +
√

21)/Q
Let K = Q and L = Q(α), where α =

√
5 +
√

21.

We have Q ⊆ Q(
√

21) ⊆ L, with [Q(
√

21) : Q] = 2
and [L : Q(

√
21)] 6 2. If [L : Q(

√
21)] = 1, then

α = a + b
√

21 for some a, b ∈ Q, so
5 +
√

21 = (a + b
√

21)2 = (a2 + 21b2) + 2ab
√

21, so
a2 + 21b2 = 5 and 2ab = 1  a4 − 5a2 + 21/4 = 0,
whence a2 = 5±2

2
, absurd. So [L : Q] = 4.

α is a root of P(x) = (x2 − 5)2 − 21 ∈ Q[x ], so this is its
min poly over Q
 the conjugates of α are α, −α, β =

√
5−
√

21, −β.

αβ =
√

(5 +
√

21)(5−
√

21) =
√

4 = 2 ∈ Q, so β ∈ L,

so L/Q is Galois.
Let G = Gal(L/Q); it is a subgroup of order [L : Q] = 4
of S4 permuting ±α, ±β.
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Example 4: Q(
√

5 +
√

21)/Q
Let K = Q and L = Q(α), where α =

√
5 +
√

21.

The conjugates of α are α, −α, β =
√

5−
√

21 = 2/α, −β.
Any τ ∈ G is determined by τ(α), which is one of 4 the
conjugates of α
 as #G = 4, all possibilities must occur.

If τ(α) = α, then τ = Id fixes α,−α, β,−β.

If τ(α) = −α, then τ(−α) = −τ(α) = α,
τ(β) = τ(2/α) = τ(2)/τ(α) = 2/− α = −β,
τ(−β) = −τ(β) = β.

If τ(α) = β, then τ(−α) = −τ(α) = −β,
τ(β) = τ(2/α) = 2/β = α, τ(−β) = −τ(β) = −α.

If τ(α) = −β, then τ(−α) = −τ(α) = β,
τ(β) = τ(2/α) = 2/− β = −α, τ(−β) = −τ(β) = α.

Conclusion: G = V4 ' (Z/2Z)× (Z/2Z).
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Example 4: Q(
√

5 +
√

21)/Q

Let K = Q and L = Q(α), where α =
√

5 +
√

21.

Remark

The Galois group of a splitting field is the group of
permutations of the roots that preserve the relations between
these roots:
In this example, −α = −(α) and αβ = 2.

Nicolas Mascot Galois theory



The Galois correspondence:
Statement and proof
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Main slide of the module!

Theorem (Galois correspondence, FUNDAMENTAL)

Let L/K be a finite Galois extension, G = Gal(L/K ),
E = {interm. exts. K ⊆ E ⊆ L}, and H = {subgroups of G}.
1 For all E ∈ E , the extension L/E is Galois.

2 The maps
H → E
H 7→ LH

and
E → H
E 7→ Gal(L/E )

are

inclusion-reversing bijections, and inverses of each other.

3 If E ∈ E and H ∈ H correspond to each other, then
[L : E ] = #H and [E : K ] = [G : H].

4 Let σ ∈ G. If E ∈ E corresponds to H ∈ H, then σ(E )
corresponds to σHσ−1 = {σhσ−1 | h ∈ H}.

5 If E ∈ E and H ∈ H correspond to each other, then

E/K is Galois ⇐⇒ H is a normal subgroup of G .

In this case, Gal(E/K ) ' G/H via σ 7→ σ|E .
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Proof of part 1

Theorem (Galois correspondence)

Let L/K be a finite Galois extension, G = Gal(L/K ),
E = {interm. exts. K ⊆ E ⊆ L}, and H = {subgroups of G}.
1 For all E ∈ E , the extension L/E is Galois.

L/K is Galois, so L is the splitting field over K of some
separable F (x) ∈ K [x ], say L = K (α1, α2, · · · ) where the αj

are the roots of F (x).

Then for all E ∈ E , we also have L = E (α1, α2, · · · ), so L is
the splitting field over E of F (x) ∈ E [x ].
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Linear lemma

Lemma

Let K field, and H 6 Aut(K ). Let ai ,j ∈ K such that the
equations

∑
j a1,jxj =

∑
j a2,jxj = · · · = 0 has a nonzero

solution x1, x2, · · · ∈ K, and such that the equations are
invariant by H. Then they have a nonzero solution in KH .

Proof.

Let x1, x2, · · · nonzero solution with as many xj = 0 as
possible, and let j0 such that xj0 6= 0. WLOG, xj0 = 1.
Let σ ∈ H . Then σ(x1), σ(x2), · · · is also a solution, and so is
y1 = σ(x1)− x1, y2 = σ(x2)− x2, · · · .
If xj = 0, then yj = σ(0)− 0 = 0; and yj0 = σ(1)− 1 = 0.
Thus yj = 0 for all j , so xj fixed by all σ ∈ H .
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Proof of part 2

Theorem (Galois correspondence)

2 The maps Φ :
H → E
H 7→ LH

and Ψ :
E → H
E 7→ Gal(L/E )

are

inclusion-reversing bijections, and inverses of each other.

That Φ and Ψ are inclusion-reversing is clear.

Let E ∈ E ; then L/E Galois, so
E = LGal(L/E) = LΨ(E) = Φ(Ψ(E )).
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Proof of part 2

Theorem (Galois correspondence)

2 The maps Φ :
H → E
H 7→ LH

and Ψ :
E → H
E 7→ Gal(L/E )

are

inclusion-reversing bijections, and inverses of each other.

Let H ∈ H, and H ′ = Ψ(Φ(H)) = Gal(L/LH). Clearly H 6 H ′.
Let n = #H , let α1, · · · , αn+1 ∈ L, and consider the n

equations
n+1∑
j=1

σ(αj)xj = 0, σ ∈ H . That’s #H = n equations

in n + 1 unknowns, so nonzero solution x1, · · · , xn+1 ∈ L.
Equations are invariant by H ; by lemma, may assume
x1, · · · , xn+1 ∈ LH . Take σ = Id:

∑n+1
j=1 xjαj = 0

 [L : LH ] < n + 1. But L/LH Galois
 #H ′ = # Gal(L/LH) = [L : LH ] 6 n = #H
 H = H ′.
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Proof of part 3

Theorem (Galois correspondence)

Let L/K be a finite Galois extension, G = Gal(L/K ),
E = {interm. exts. K ⊆ E ⊆ L}, and H = {subgroups of G}.
3 If E ∈ E and H ∈ H correspond to each other, then

[L : E ] = #H and [E : K ] = [G : H].

L/E is Galois, so [L : E ] = # Gal(L/E ) = #H .

Therefore [G : H] = #G
#H

= # Gal(L/K)
# Gal(L/E)

= [L:K ]
[L:E ]

= [E : K ].
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Proof of part 4

Theorem (Galois correspondence)

Let L/K be a finite Galois extension, G = Gal(L/K ),
E = {interm. exts. K ⊆ E ⊆ L}, and H = {subgroups of G}.
4 Let σ ∈ G. If E ∈ E corresponds to H ∈ H, then σ(E )

corresponds to σHσ−1 = {σhσ−1 | h ∈ H}.

Since H = Gal(L/E ),

τ ∈ Gal(L/σ(E ))⇐⇒ ∀e ∈ E , τ(σ(e)) = σ(e)

⇐⇒ ∀e ∈ E , σ−1τσ(e) = e

⇐⇒ σ−1τσ ∈ H

⇐⇒ τ ∈ σHσ−1.
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A new understanding of normal

Lemma

Let L/K Galois, and let E ∈ E . Then

E/K Galois ⇐⇒ σ(E ) = E for all σ ∈ Gal(L/K ).

Proof.

E/K separable since L/K is, so E/K Galois iff. normal.

⇒: If E/K normal, then E = splitting field over K of some
F (x) ∈ K [x ], so E = K (α1, α2, · · · ) where αj roots of
F (x) in L. This description is invariant by Gal(L/K ).

⇐: Let P(x) ∈ K [x ] irreducible over K have a root α ∈ E .
L/K normal, α ∈ L, so P(x) has all its roots in L;
and if β ∈ L is such a root, then β = σ(α) for some
σ ∈ Gal(L/K ). But then β ∈ σ(E ) = E , so P(x) has all
its roots in E , so E/K normal.

Nicolas Mascot Galois theory



Proof of part 5

Theorem (Galois correspondence)

5 If E ∈ E and H ∈ H correspond to each other, then

E/K is Galois ⇐⇒ H is a normal subgroup of G .

In this case, Gal(E/K ) ' G/H via σ 7→ σ|E .

By lemma, E/K Galois ⇐⇒ ∀σ ∈ G , σ(E ) = E

⇐⇒ ∀σ ∈ G , σHσ−1 = H

⇐⇒ H normal in G .

Suppose this is the case. Then
Gal(L/K ) −→ Gal(E/K )

σ 7−→ σ|E
well-defined since each σ stabilises E , and group morphism,
whose kernel is H  induces injection G/H −→ Gal(E/K ).
As #(G/H) = [G : H] = [E : K ] = # Gal(E/K ), actually
bijection.

Nicolas Mascot Galois theory



The Galois correspondence:
Practice by examples
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Example 1: Q(
√

2,
√

3)/Q
L = Q(

√
2,
√

3) is Galois over Q with Galois group
G = Gal(L/Q) = {Id, σ2, σ3, σ2σ3} ' Z/2Z× Z/2Z, where

σ2(
√

2) = −
√

2, σ2(
√

3) =
√

3,

σ3(
√

2) =
√

2, σ3(
√

3) = −
√

3.

Galois correspondence:

{Id} Q(
√

2,
√

3)

{Id, σ3} {Id, σ2σ3} {Id, σ2} ←→ Q(
√

2) Q(
√

6) Q(
√

3)

G Q

Let H = {Id, σ2}; the corresponding E is LH = Q(
√

3).
Since G is Abelian, H is normal in G , so E/Q is Galois, and
Gal(E/Q) = G/H = {{Id, σ2}, {σ3, σ2σ3}} ' Z/2Z.
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Example 2: Q( 3
√

2)/Q

Let K = Q, L = Q( 3
√

2). [L : Q] = 3, so Gal(L/Q) = Z/3Z
which has no non-trivial subgroups, so there are no non-trivial
intermediate subfields.

WRONG! L/Q is not Galois, so the correspondence may not
apply. But it applies to the extension N/Q,
where N = Q( 3

√
2, ζ3) is the Galois closure of L over Q.
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Example 2: Q( 3
√

2)/Q

Let K = Q, L = Q( 3
√

2). [L : Q] = 3, so Gal(L/Q) = Z/3Z
which has no non-trivial subgroups, so there are no non-trivial
intermediate subfields.

WRONG! L/Q is not Galois, so the correspondence may not
apply. But it applies to the extension N/Q,
where N = Q( 3

√
2, ζ3) is the Galois closure of L over Q.
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Example 2: Q( 3
√

2)/Q

Gal(N/Q) ' S3 permuting conjugates

α1 =
3
√

2, α2 = ζ3
3
√

2, α3 = ζ2
3

3
√

2,

 subgroup diagram:
{Id}

{Id, (1, 2)}

2

{Id, (1, 3)}

2

{Id, (2, 3)}

2

A3

3

Gal(N/Q) ' S3

3 3 3

2

where A3 = {Id, (1, 2, 3), (1, 3, 2)} ' Z/3Z is the alternate
subgroup of S3.
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Example 2: Q( 3
√

2)/Q
{Id}

{Id, (1, 2)}
2

{Id, (1, 3)}
2

{Id, (2, 3)}
2

A3

3

Gal(N/Q) ' S3

3 3 3

2

OO

��

?

?
2

?
2

?
2

?

3

?

3 3 3

2
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Example 2: Q( 3
√

2)/Q

H = {Id, (2, 3)} has order 2 and index 3, so E = NH has
[E : Q] = 3 and [N : E ] = 2.
α1 is fixed by H , so α1 ∈ E , so Q(α1) ⊆ E . By tower law
applied to Q ⊆ Q(α1) ⊆ E , actually E = Q(α1) = L.

Let us now determine F = NA3 .
We have [F : Q] = 2 and [N : F ] = 3.
Observe that ζ3 = α2

α1
= α3

α2
= α1

α3
is fixed by H , so Q(ζ3) ⊆ F .

Also note that α3 root of irreducible x2 + x + 1 = x3−1
x−1
∈ Q[x ]

 [Q(ζ3) : Q] = 2, so F = Q(ζ3) by tower law.
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Example 2: Q( 3
√

2)/Q
{Id}

{Id, (1, 2)}
2

{Id, (1, 3)}
2

{Id, (2, 3)}
2

A3

3

Gal(N/Q) ' S3

3 3 3

2

OO

��

N

Q(α3)
2

Q(α2)
2

L = Q(α1)
2

Q(ζ3)

3

Q

3 3 3

2
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Example 2: Q( 3
√

2)/Q

For each intermediate E , N/E is Galois (actually splitting field
of x3 − 2 over E ).
Only A3 is normal in S3, so only Q(ζ3) is Galois over K = Q.

In fact, the other subgroups

{Id, (1, 2)}, {Id, (1, 3)}, {Id, (2, 3)}
are group-conjugate to each other in S3, so that the
corresponding intermediate extensions

Q(α3), Q(α2), Q(α1)

are Galois-conjugate to each other.
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Example 3: Q(
√

5 +
√

21)/Q

Let L = Q(α), where α =
√

5 +
√

21. We know that
Gal(L/Q) ' V4 acting on conjugates α, −α, β = 2/α, −β.

Let σ1 : α 7→ −α, σ2 : α 7→ β, σ3 : α 7→ −β.

As V4 ' (Z/2Z)× (Z/2Z), subgroup diagram

{Id}

{Id, σ1}

2

{Id, σ2}

2

{Id, σ3}

2

Gal(L/Q).

2 2 2
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Example 3: Q(
√

5 +
√

21)/Q

For i = 1, 2, 3, write Hi = {Id, σi} and Ei = LHi .

We have [Ei : Q] = [G : Hi ] = 2, [L : Ei ] = #Hi = 2.

{Id} L

{Id, σ1}

2

{Id, σ2}

2

{Id, σ3}

2

oo // E1

2

E2

2

E3

2

Gal(L/Q)

2 2 2

Q

2 2 2
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Example 3: Q(
√

5 +
√

21)/Q
σ1 : α 7→ −α fixes α2 = 5 +

√
21, so Q(α2) = Q(

√
21) ⊆ E1,

so E1 = Q(
√

21) by degree.

σ2 : α↔ β fixes αβ = 2, so Q(αβ) = Q ⊆ E2, useless; but σ2

also fixes α + β, and (α + β)2 = α2 + β2 + 2αβ = 14, so√
14 ∈ E2, so E2 = Q(

√
14) by degree.

σ3 : α↔ −β fixes α− β; as (α− β)2 = 6, E3 = Q(
√

6).

{Id} L

{Id, σ1}
2

{Id, σ2}
2

{Id, σ3}
2

oo // Q(
√

21)

2

Q(
√

14)

2

Q(
√

6)

2

Gal(L/Q)

2 2 2

Q
2 2 2

Gal(L/Q) Abelian all subgroups normal all E Galois / Q.

We see L = Q(
√

21,
√

14,
√

6). Yet [L : Q] = 4 not 8; in fact,

any two generators suffice, e.g.
√

6 =
√

21
√

14
7
∈ Q(

√
14,
√

21).
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Example 4: Q(
√

5 +
√

15)/Q

Let L = Q(α), where α =
√

5 +
√

15.
We have Q ⊆ Q(

√
15) ⊆ L, and α 6∈ Q(

√
15)  [L : Q] = 4

 α has min poly (x2 − 5)2 − 15 ∈ Q[x ] over Q
 α has conjugates ±α,±β over Q, where β =

√
5−
√

15.

This time, αβ =
√

10 6∈ Q, so not clear whether β ∈ L.

Suppose β ∈ L. Then L/Q Galois, Gal(L/Q) of order 4, and
E = Q(

√
15) corresponds to a subgroup H = {Id, σ}.

As α2 = 5 +
√

15 ∈ E , σ(α2) = α2, so σ(α) = ±α.
α 6∈ E lest L = E , so σ(α) = −α.
Besides, σ permutes ±α, ±β injectively, so σ(β) = ±β.
If σ(β) = β, then β ∈ E , whereas [Q(β) : Q] = 4, absurd.
If σ(β) = −β, then

√
10 = αβ ∈ E = Q(

√
15), absurd.

So β 6∈ L.
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Example 4: Q(
√

5 +
√

15)/Q
Since β 6∈ L, L not Galois over Q; its Galois closure over Q is
N = Q(±α,±β) = L(β) ) L.

As β2 = 5−
√

15 ∈ L, [N : L] 6 2, so [N : L] = 2;
thus # Gal(N/Q) = [N : Q] = 8, subgroup of S4 � ±α,±β.

Gal(N/Q) preserves negatives, so preserves square

α

β−α

−β

so contained in symmetry group D8 of the square.
But #D8 = 8, so Gal(N/Q) = D8.
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Example 4: Q(
√

5 +
√

15)/Q
Name the elements of Gal(N/Q):

τ

τ ′

σβ

σα

α

β−α

−β

ρ

meaning σα : α 7→ −α, −α 7→ α, β 7→ β, −β 7→ −β
and ρ : α 7→ β 7→ −α 7→ −β 7→ α, etc.
The central symmetry is σασβ = σβσα = ττ ′ = τ ′τ = ρ2.
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Example 4: Q(
√

5 +
√

15)/Q
By Lagrange, possible subgroup orders 2 and 4.
#H = 2 H = {Id, γ} ' Z/2Z, γ of order 2.
#H = 4 either H = {Id, γ, γ2, γ3} ' Z/4Z, γ of order 4,
or H = {Id, γ, γ′, γγ′} ' (Z/2Z)× (Z/2Z), γ and γ′ of order
2 and commute.

 Subgroup diagram:
{Id}

{Id, σβ}

2

{Id, σα}

2

{Id, ρ2}

2

{Id, τ}

2

{Id, τ ′}

2

{Id, σα, σβ, ρ2}

2 2 2

{Id, ρ, ρ2, ρ3}

2

{Id, τ, τ ′, ρ2}

2 2 2

Gal(N/Q) ' D8

2 2 2
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Example 4: Q(
√

5 +
√

15)/Q
{Id}

{Id, σβ}

2

{Id, σα}

2

{Id, ρ2}

2

{Id, τ}

2

{Id, τ ′}

2

{Id, σα, σβ, ρ2}

2 2 2

{Id, ρ, ρ2, ρ3}

2

{Id, τ, τ ′, ρ2}

2 2 2

Gal(N/Q) ' D8

2 2 2

OO

��

N = Q(α, β)

L = Q(α)

2

Q(β)

2

Q(α/β) = Q(
√

15,
√

6,
√

10)

2

Q(α + β)

2

Q(α− β)

2

Q(α2) = Q(β2) = Q(
√

15)

2 2 2

Q(α
β
− β

α
) = Q(

√
6)

2

Q(αβ) = Q(
√

10)

2 2 2

Q

2 2 2
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Example 4: Q(
√

5 +
√

15)/Q

The group-conjugates of σα are σα and σβ, so the subgroups
{Id, σα} and {Id, σβ} are not normal, and are conjugate to
each other (by ρ). Correspondingly, Q(β) and Q(α) are not
Galois over Q, and are switched by ρ.

Similarly, {Id, τ} and {Id, τ ′} are conjugate (by ρ again);
correspondingly, Q(α + β) and Q(α− β) are not Galois over
Q, and are switched by ρ.

All the other subgroups are normal; correspondingly, all the
other subfields are Galois over Q.

Nicolas Mascot Galois theory



Application to cyclotomy
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Complex N-th roots of unity

Fix N ∈ N. Let ζN = e2πi/N ∈ C.

Definition (Root of 1)

A (complex) N-th root of unity is a z ∈ C such that zN = 1.

These are the ζkN , k = 0, 1, · · · ,N − 1. They form a subgroup
µN of C×, isomorphic to Z/NZ by Z/NZ 3 k ←→ ζkN ∈ µN .
They have |z | = 1, so z−1 = z .

Definition (Primitive root of 1)

z ∈ µN is primitive if zM 6= 1 for all N 3 M < N.

Example (N=4)

The 4th roots of unity are 1 = ζ0
4 , i = ζ4, −1 = ζ2

4 , −i = ζ3
4 .

Only i and −i are primitive.

Nicolas Mascot Galois theory



Complex N-th roots of unity

These are the ζkN , k = 0, 1, · · · ,N − 1. They form a subgroup
µN of C×, isomorphic to Z/NZ by Z/NZ 3 k ←→ ζkN ∈ µN .
They have |z | = 1, so z−1 = z .

Definition (Primitive root of 1)

z ∈ µN is primitive if zM 6= 1 for all N 3 M < N.

Example (N=4)

The 4th roots of unity are 1 = ζ0
4 , i = ζ4, −1 = ζ2

4 , −i = ζ3
4 .

Only i and −i are primitive.

Proposition

ζkN is a primitive N-th root of 1 ⇐⇒ gcd(k ,N) = 1
⇐⇒ k ∈ (Z/NZ)×.

Unofficial notation: µ×N .
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Cyclotomic polynomials

Let z ∈ µN . Then z root of xN − 1 ∈ Q[x ], so algebraic / Q.
But xN − 1 is usually not the min poly!

Definition (Cyclotomic polynomial)

The N-th cyclotomic polynomial is

ΦN(x) =
∏
z∈µ×N

(x − z) =
∏

k∈(Z/NZ)×

(x − ζkN).

Theorem

ΦN(x) ∈ Z[x ], and is irreducible over Q.

Proposition

xN − 1 =
∏
d |N

Φd(x).
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Cyclotomic polynomials

Theorem

ΦN(x) ∈ Z[x ], and is irreducible over Q.

Proposition

xN − 1 =
∏
d |N

Φd(x).

Example

For p ∈ N prime, xp − 1 = Φ1(x)Φp(x) = (x − 1)Φp(x)
 Φp(x) = xp−1

x−1
= xp−1 + · · ·+ x + 1.

Example

Φ9(x) =
x9 − 1

Φ1(x)Φ3(x)
=

x9 − 1

(x − 1)(x2 + x + 1)
= x6 + x3 + 1.
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Cyclotomic extensions

Definition

The N-th cyclotomic extension is Q(ζN) = Q(µN).

[Q(ζN) : Q] = deg ΦN(x) = #µ×N = #(Z/NZ)× = φ(N).

Q(ζN) ⊃ µN is splitting field / Q of xN − 1, and of ΦN(x)
 Q(ζN)/Q is Galois.

Theorem

Gal(Q(ζN)/Q) is canonically isomorphic to (Z/NZ)×.
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Cyclotomic extensions

Theorem

Gal(Q(ζN)/Q) is canonically isomorphic to (Z/NZ)×.

Proof.

Let σ ∈ Gal(Q(ζN)/Q). Determined by σ(ζN), which is a root
of ΦN(x)  at most φ(n) choices  all must occur.
For each k ∈ (Z/NZ)×, let σk : ζN 7→ ζkN .
Then for any z ∈ µN , say z = ζ jN , we have

σk(z) = σk(ζ jN) = σk(ζN)j = (ζkN)j = ζkjN = (ζ jN)k = zk .
Therefore σjσk = (z 7→ zk 7→ (zk)j = z jk) = σjk .

Example

Complex conjugation is σ−1 : z 7→ z−1 = z .
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Aside: Abelian extensions (NON-EXAMINABLE)

Definition (Abelian extension)

An Abelian extension is a Galois extension whose Galois group
is Abelian.

So cyclotomic fields are Abelian extensions of Q.

Suppose Q ⊆ E ⊆ Q(ζN).
Then E corresponds to H 6 G = Gal(Q(ζN)/Q).
Since G is Abelian, H is automatically normal; so E/Q is
Galois and Gal(E/Q) ' G/H is still Abelian. Conversely,

Theorem (Kronecker-Weber)

If K is an Abelian extension of Q, then there exists N ∈ N
such that K ⊆ Q(ζN).

Example

For all n ∈ Z, Q(
√
n) ⊆ Q(ζ4n).
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Example: N = 9

Let L = Q(ζ9), G = Gal(L/Q).
The min poly of ζ9 is Φ9(x) = x6 + x3 + 1.
[L : Q] = 6 = φ(9), G ' (Z/9Z)× = {1, 2, 4,−4,−2,−1}.
We observe that (Z/9Z)× is cyclic, generated by 2.

Z/6Z oo ∼ // (Z/9Z)× oo ∼ // G

m oo // 2m oo // σ2m

Subgroup diagram:
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Example: N = 9

Let L = Q(ζ9), G = Gal(L/Q).
The min poly of ζ9 is Φ9(x) = x6 + x3 + 1.
[L : Q] = 6 = φ(9), G ' (Z/9Z)× = {1, 2, 4,−4,−2,−1}.
We observe that (Z/9Z)× is cyclic, generated by 2.

Z/6Z oo ∼ // (Z/9Z)× oo ∼ // G

m oo // 2m oo // σ2m

Subgroup diagram:
{0}

2

33Z/6Z = {0, 3}

3 2Z/6Z = {0, 2, 4}
2

Z/6Z.
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Example: N = 9

Let L = Q(ζ9), G = Gal(L/Q).
The min poly of ζ9 is Φ9(x) = x6 + x3 + 1.
[L : Q] = 6 = φ(9), G ' (Z/9Z)× = {1, 2, 4,−4,−2,−1}.
We observe that (Z/9Z)× is cyclic, generated by 2.

Z/6Z oo ∼ // (Z/9Z)× oo ∼ // G

m oo // 2m oo // σ2m

Subgroup diagram:
{1}

2

3{20 = 1, 23 = −1}

3 {20 = 1, 22 = 4, 24 = −2}
2

(Z/9Z)×.
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Example: N = 9

Let L = Q(ζ9), G = Gal(L/Q).
The min poly of ζ9 is Φ9(x) = x6 + x3 + 1.
[L : Q] = 6 = φ(9), G ' (Z/9Z)× = {1, 2, 4,−4,−2,−1}.
We observe that (Z/9Z)× is cyclic, generated by 2.

Z/6Z oo ∼ // (Z/9Z)× oo ∼ // G

m oo // 2m oo // σ2m
Subgroup diagram:

{σ1 = Id}
2

3H2 = {Id, σ−1}

3 H3 = {Id, σ4, σ−2}
2

G .
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Example: N = 9

{σ1 = Id}
2

3H2 = {Id, σ−1}

3 H3 = {Id, σ4, σ−2}
2

G .

LH3 3 ζ9 + ζ4
9 + ζ−2

9 =
ζ3

9 +ζ6
9 +1

ζ2
9

= 0, useless.

But also LH3 3 ζ9ζ
4
9ζ
−2
9 = ζ3

9 = ζ3, so Q(ζ3) ⊆ LH3 .

[Q(ζ3) : Q] = φ(3) = 2 = [G : H3] = [LH3 : Q],
so LH3 = Q(ζ3).
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Example: N = 9
{σ1 = Id}

2

3H2 = {Id, σ−1}

3 H3 = {Id, σ4, σ−2}
2

G .

LH2 = L ∩ R since σ−1 is complex conjugation.

LH2 3 ζ9ζ
−1
9 = 1 and α = ζ9 + ζ−1

9 = 2 cos(2π/9),
whose conjugates are α = σ±1(α),

β = σ±2(α) = ζ2
9 + ζ−2

9 = 2 cos(4π/9),
and γ = σ±4(α) = ζ4

9 + ζ−4
9 = 2 cos(8π/9).

α, β, γ distinct, so α 6∈ LG = Q, so Q ( Q(α) ⊆ LH2 .

[Q(α) : Q] = degQ α = #conjs = 3 = [G : H2] = [LH2 : Q]
 LH2 = Q(α) = Q(β) = Q(γ).
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Example: N = 9

{σ1 = Id}
2

3H2 = {Id, σ−1}

3 H3 = {Id, σ4, σ−2}
2

GOO
��

L = Q(ζ9)
2

3Q(cos(2π/9))

3 Q(ζ3)
2

Q.
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Example: N = 9

The min poly of α over Q is

P(x) =
∏

c∈G ·α

(
x − c

)
= (x − α)(x − β)(x − γ).

Its coefficients are combinations of powers of ζ9 which lie in Q
 fixed by G
 symmetric in roots of Φ9(x) = x6 + x3 + 1
 computable by Vieta.

One finds P(x) = x3 − 3x + 1.
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Other applications
(NON-EXAMINABLE)

Nicolas Mascot Galois theory



Constructible numbers

Theorem (Wantzel)

α ∈ R is constructible ⇐⇒ there exist fields
Q = E0 ⊂ · · · ⊂ Er = Q(α)

such that [Ej+1 : Ej ] = 2 for all j .

Corollary

α constructible ⇒ α alg. / Q and [Q(α) : Q] = power of 2.

Counter-example

Let α ∈ R root of f (x) = x4 − 8x2 + 4x + 2 ∈ Q[x ].
f (x) irr / Q, so [Q(α) : Q] = 4; yet α not constructible!
Indeed, let N = Q(α1, · · · , α4) where αj roots of f (x). Then
G = Gal(N/Q) 6 S4, and Q(α) ⊂ N corresponds to Gα 6 G .
It turns out that G = S4, so Gα = {Id} × S3 6 S4. Since there
is no Gα < H < G , there is no Q ( E ( Q(α).
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Constructible numbers vs. 2-groups

Definition

Let p ∈ N be prime. A p-group is a finite group G such that
#G is a power of p.

Proposition

If G is a p-group, then there exist

{1G} = H0 < · · · < Hr = G

such that [Hj+1 : Hj ] = p for all j .

Theorem

Let α ∈ R alg./Q, and N = Galois closure of Q(α)/Q. Then

α is constructible ⇐⇒ Gal(N/Q) is a 2-group.
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Finiteness of subextensions

Proposition

If L/K is a finite separable extension,
then the number of K ⊆ E ⊆ L is finite.

Proof.

Let N = normal closure of L/K . Then N/K is finite Galois,
so G = Gal(N/K ) is finite, so there are finitely many H 6 G ,
whence finitely many K ⊆ E ⊆ N .
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A vector space lemma

Lemma

Let K be a field, and V a vector space over K.
If V =

⋃r
j=1 Wj with Wj ( V subspaces, then K is finite.

Proof.

WLOG there exists v ∈ V \
⋃r−1

j=1 Wj , in particular v ∈ Wr .
Let also a ∈ V \Wr , and L = {a + λv | λ ∈ K}.
If p = a + λv ∈ L ∩Wr , then a = p − λv ∈ Wr , absurd.
So L ∩Wr = ∅.
If p = a + λv , q = a + µv ∈ L ∩Wj for j < r , then
(µ− λ)v = q − p ∈ Wj , so p = q  #(L ∩Wj) 6 1.

As L = L ∩ V =
⋃r

j=1(L ∩Wj), #K = #L 6 r − 1.
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The primitive element theorem

Theorem (Primitive element theorem)

Let L/K be a finite separable extension. There exists a
primitive element γ ∈ L, i.e. such that L = K (γ).

Proof.

If K finite, OK. Suppose K infinite.
L =

⋃
α∈L K (α). This is actually a finite union, since there are

finitely many K ⊆ E ⊆ L. Apply lemma.

Example

Q(
√

2,
√

3) = Q(
√

2 +
√

3)
= Q(x

√
2 + y

√
3) for all 0 6= x , y ∈ Q.
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An inseparable counterexample

Counter-example

Let L = k(s, t) where char k = p, and K = k(sp, tp).
[L : K ] = p2, because K ⊂ k(s, tp) = K (s) ⊂ L.

For all α = f (s, t) ∈ L, a = αp = Frobα ∈ kp(sp, tp) ⊆ K ,
so α root of xp − a ∈ K [x ], so [K (α) : K ] 6 p, so L ) K (α).

For λ ∈ k , let Eλ = K (s + λt). If Eλ = Eµ for λ 6= µ, then

s + µt ∈ K (s + λt), so t = (s+µt)−(s+λt)
µ−λ ∈ K (s + λt) and

s = (s + λt)− λt ∈ K (s + λt), so L = K (s, t) = K (s + λt),
absurd.
 If #k =∞, e.g. k = Fp(u), that’s ∞ many K ⊂ Eλ ⊂ L.
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