MAU34101 Galois theory

2 - The Galois correspondence

Nicolas Mascot <u>mascotn@tcd.ie</u> Module web page

Michaelmas 2021–2022 Version: October 14, 2021

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

More about automorphisms

Bad ways to specify an automorphism

Let $K \subseteq L$ be a field extension. How to describe $\sigma \in Aut_{K}(L)$?

Example

Take $K = \mathbb{Q} \subset L = \mathbb{Q}(\sqrt{2})$. Because $L \simeq_{\mathbb{Q}} \mathbb{Q}[x]/(x^2 - 2) \simeq_{\mathbb{Q}} \mathbb{Q}(-\sqrt{2}) = L$, we have

$$\sigma: \begin{array}{ccc} L & \longrightarrow & L \\ a+b\sqrt{2} & \longmapsto & a-b\sqrt{2} \end{array}.$$

This σ takes $(1 - \sqrt{2})^n \to 0$ to $(1 + \sqrt{2})^n \to +\infty$, so it is not continuous at all!

Let $K \subseteq L$ be a field extension. How to describe $\sigma \in Aut_{K}(L)$?

Remark

 σ is a *K*-automorphism $\iff \sigma$ is *K*-linear: $\sigma(kx) = k\sigma(x)$ for $k \in K, x \in L$.

 \rightsquigarrow if $[L:K] < \infty$, we could fix a K-basis of L, and write down the matrix of σ .

Let $K \subseteq L$ be a field extension. How to describe $\sigma \in Aut_{K}(L)$?

Remark

 σ is a *K*-automorphism $\iff \sigma$ is *K*-linear: $\sigma(kx) = k\sigma(x)$ for $k \in K, x \in L$.

→ if $[L:K] < \infty$, we could fix a K-basis of L, and write down the matrix of σ .

But there is a much better way!

Good way to specify an automorphism

Lemma

Suppose $L = K(\alpha_1, \dots, \alpha_r)$. Any $\sigma \in Aut_{\kappa}(L)$ is completely determined by $\sigma(\alpha_1), \dots, \sigma(\alpha_r)$.

Proof.

Every
$$x \in L$$
 is of the form $x = \frac{\sum_{j_1, \dots, j_r} a_{j_1, \dots, j_r} \alpha_1^{j_1} \dots \alpha_r^{j_r}}{\sum_{j_1, \dots, j_r} b_{j_1, \dots, j_r} \alpha_1^{j_1} \dots \alpha_r^{j_r}}$
where a_{i_1, \dots, i_r} , $b_{i_1, \dots, i_r} \in K$

$$\rightsquigarrow \sigma(x) = \frac{\sum_{j_1, \cdots, j_r} \sigma(a_{j_1, \cdots, j_r}) \sigma(\alpha_1^{j_1} \cdots \alpha_r^{j_r})}{\sum_{j_1, \cdots, j_r} \sigma(b_{j_1, \cdots, j_r}) \sigma(\alpha_1^{j_1} \cdots \alpha_r^{j_r})} = \frac{\sum_{j_1, \cdots, j_r} a_{j_1, \cdots, j_r} \sigma(\alpha_1)^{j_1} \cdots \sigma(\alpha_r)^{j_r}}{\sum_{j_1, \cdots, j_r} b_{j_1, \cdots, j_r} \sigma(\alpha_1)^{j_1} \cdots \sigma(\alpha_r)^{j_r}}$$

determined by the values $\sigma(\alpha_1), \cdots, \sigma(\alpha_r)$.

Good way to specify an automorphism

Lemma

Suppose $L = K(\alpha_1, \dots, \alpha_r)$. Any $\sigma \in Aut_{\kappa}(L)$ is completely determined by $\sigma(\alpha_1), \dots, \sigma(\alpha_r)$.

Example

$$\sigma \in \operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\sqrt{2}))$$
 is determined by $\sigma(\sqrt{2})$.

 $\sigma \in \operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}(\sqrt{2},\sqrt{3})\right)$ is determined by $\left(\sigma(\sqrt{2}),\sigma(\sqrt{3})\right)$.

Good way to specify an automorphism

Lemma

Suppose $L = K(\alpha_1, \dots, \alpha_r)$. Any $\sigma \in Aut_{\kappa}(L)$ is completely determined by $\sigma(\alpha_1), \dots, \sigma(\alpha_r)$.

Remark

K-automorphisms take roots of $F(x) \in K[x]$ to roots of $F(x) \in K[x]$ \rightsquigarrow for each *j*, they take α_j to a conjugate of α_j .

Example

$$\begin{split} \sigma &\in \operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}(\sqrt{2})\right) \rightsquigarrow \sigma(\sqrt{2}) = \pm \sqrt{2}.\\ \sigma &\in \operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}(\sqrt{2},\sqrt{3})\right) \rightsquigarrow \sigma(\sqrt{2}) = \pm \sqrt{2}, \ \sigma(\sqrt{3}) = \pm \sqrt{3}.\\ \sigma &\in \operatorname{Aut}_{\mathbb{Q}}\left(\mathbb{Q}(\sqrt[3]{2})\right) \rightsquigarrow \sigma(\sqrt[3]{2}) \text{ root of } x^3 - 2.\\ \operatorname{But} \sigma(\sqrt[3]{2}) &\in \mathbb{Q}(\sqrt[3]{2}) \subset \mathbb{R}, \text{ so } \sigma(\sqrt[3]{2}) = \sqrt[3]{2}, \text{ so } \sigma = \operatorname{Id}. \end{split}$$

Let
$$K = \mathbb{Q}$$
, $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$, and $G = \operatorname{Aut}_{K}(L)$.
We admit that $G = \langle \sigma_2, \sigma_3 \rangle \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, where

$$\sigma_2(\sqrt{2}) = -\sqrt{2}, \ \sigma_2(\sqrt{3}) = \sqrt{3},$$

 $\sigma_3(\sqrt{2}) = \sqrt{2}, \ \sigma_3(\sqrt{3}) = -\sqrt{3}.$

Reminder: if $H \subseteq \operatorname{Aut}_{\mathbb{Q}}(L)$, then

$$L^{H} = \{x \in L \mid \sigma(x) = x \text{ for all } \sigma \in H\}$$

is a subfield of *L* containing \mathbb{Q} .

$$H = \{ \mathsf{Id}, \sigma_2 \} \rightsquigarrow L^H = \mathbb{Q}(\sqrt{3}).$$

$$H = \{ \mathsf{Id}, \sigma_3 \} \rightsquigarrow L^H = \mathbb{Q}(\sqrt{2}).$$

$$H = G \rightsquigarrow L^H = \mathbb{Q}.$$

$$H = \{ \mathsf{Id} \} \rightsquigarrow L^H = L.$$

Let $K = \mathbb{Q}$, $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$, and $G = \operatorname{Aut}_{K}(L)$. We <u>admit</u> that $G = \langle \sigma_{2}, \sigma_{3} \rangle \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, where $\sigma_{2}(\sqrt{2}) = -\sqrt{2}, \ \sigma_{2}(\sqrt{3}) = \sqrt{3},$ $\sigma_{3}(\sqrt{2}) = \sqrt{2}, \ \sigma_{3}(\sqrt{3}) = -\sqrt{3}.$

$$\begin{array}{cccc} \text{subgroups } H \leqslant G & \longleftrightarrow & \text{intermediate extensions } K \subseteq E \subseteq L \\ H & \longmapsto & L^H \\ \operatorname{Aut}_E(L) & \longleftrightarrow & E \end{array}$$

$$\begin{cases} \mathsf{Id} \} & \mathbb{Q}(\sqrt{2},\sqrt{3}) \\ \gamma & \ddots & \ddots \\ \mathsf{Id},\sigma_3 \} & \mathsf{Id},\sigma_2 \} & \longleftrightarrow & \mathbb{Q}(\sqrt{2}) & \mathbb{Q}(\sqrt{3}) \\ \gamma & \gamma & \ddots & \ddots \\ \mathbf{G} & \mathbb{Q} \end{cases}$$

Let $K = \mathbb{Q}$, $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$, and $G = \operatorname{Aut}_{K}(L)$. We <u>admit</u> that $G = \langle \sigma_{2}, \sigma_{3} \rangle \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, where $\sigma_{2}(\sqrt{2}) = -\sqrt{2}, \ \sigma_{2}(\sqrt{3}) = \sqrt{3},$ $\sigma_{3}(\sqrt{2}) = \sqrt{2}, \ \sigma_{3}(\sqrt{3}) = -\sqrt{3}.$

$$\begin{array}{cccc} \text{subgroups } H \leqslant G & \longleftrightarrow & \text{intermediate extensions } K \subseteq E \subseteq L \\ H & \longmapsto & L^H \\ \operatorname{Aut}_E(L) & \longleftrightarrow & E \end{array}$$

Let $K = \mathbb{Q}$, $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$, and $G = \operatorname{Aut}_{K}(L)$. We <u>admit</u> that $G = \langle \sigma_{2}, \sigma_{3} \rangle \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, where $\sigma_{2}(\sqrt{2}) = -\sqrt{2}, \ \sigma_{2}(\sqrt{3}) = \sqrt{3},$ $\sigma_{3}(\sqrt{2}) = \sqrt{2}, \ \sigma_{3}(\sqrt{3}) = -\sqrt{3}.$

subgroups
$$H \leq G \iff$$
 intermediate extensions $K \subseteq E \subseteq L$
 $H \implies L^{H}$
 $\operatorname{Aut}_{E}(L) \iff E$
{Id}
 $\mathbb{Q}(\sqrt{2}, \sqrt{3})$

O

Counter-example

Take
$$K = \mathbb{Q}$$
, $L = \mathbb{Q}(\sqrt[3]{2})$. Then $\operatorname{Aut}_{K}(L) = \{\operatorname{Id}\}$
 L
 $\{\operatorname{Id}\}$??? \cup
 K

 \rightsquigarrow We need the presence of automorphisms to make the Galois correspondence work.

Separable extensions

Definition (Separable element, separable extension)

Let $K \subseteq L$ be an algebraic extension, and let $\alpha \in L$.

- α is separable over K if its minimal polynomial over K is separable (disc \neq 0).
- The extension $K \subseteq L$ is <u>separable</u> if all the elements of L are separable over K.

Definition (Separable element, separable extension)

Let $K \subseteq L$ be an algebraic extension, and let $\alpha \in L$.

- α is separable over K if its minimal polynomial over K is separable (disc \neq 0).
- The extension $K \subseteq L$ is <u>separable</u> if all the elements of L are separable over K.

Bad things can happen in characteristic p!

Factorisation of $x^p - a$ in characteristic p

Lemma (Factorisation of $x^p - a$ in characteristic p)

Let char
$$K = p$$
, $a \in K$, and $F(x) = x^p - a \in K[x]$.

If there exists b ∈ K such that a = b^p, then the factorisation of F(x) in K[x] is F(x) = (x − b)^p.

2 Else, F(x) is irreducible in K[x].

Proof.

If
$$a = b^{p}$$
, then $F(x) = x^{p} - b^{p} = (x - b)^{p}$.

Conversely, let $\beta \in \overline{K}$ be a root of F(x), so $\beta^p = a$. Then $F(x) = (x - \beta)^p \in \overline{K}[x]$. Suppose F(x) reducible over K, and let $G(x) \in K[x]$ be a nontrivial factor. Then

$$G(x) = (x - \beta)^d = x^d - d\beta x^{d-1} + \cdots$$

with $0 < d = \deg G < p$, so $d\beta \in K$.
But $0 \neq d \in K$, so $\beta \in K$.

Counter-example

Let $K = \mathbb{F}_p(t)$ be the rational fraction field over \mathbb{F}_p . Observe that $K^p = \operatorname{Frob}(K) = \mathbb{F}_p(t^p)$, so $t \notin K^p$, $\rightsquigarrow F(x) = x^p - t \in K[x]$ is irreducible.

Consider stem field $L = \mathbb{F}_p(t^{1/p}) = \mathbb{F}_p(u)$, $u = t^{1/p}$. Then F(u) = 0, so u algebraic / K with min poly F(x). But in L[x], $F(x) = (x - u)^p \rightsquigarrow$ inseparable!

Besides, for all $\sigma \in Aut_{\kappa}(L)$, $\sigma(u)$ root of $F(x) \in K[x]$ $\rightsquigarrow \sigma(u) = u \rightsquigarrow Aut_{\kappa}(L) = \{Id\}$, bad for Galois!

Remark

Squarefree-ness of a polynomial depends on the ground field! Separability does not, because it is detected by disc $\neq 0$.

Shape of inseparable irreducible polynomials

Lemma

Let $P(x) \in K[x]$ irreducible and inseparable. Then P'(x) = 0.

Proof.

 $0 = \operatorname{disc} P \sim \operatorname{Res}(P, P')$, so P and P' have a common factor, which can only be P since P is irreducible. But deg $P' < \operatorname{deg} P$, so $P \mid P' \Longrightarrow P' = 0$.

Shape of inseparable irreducible polynomials

Lemma

Let $P(x) \in K[x]$ irreducible and inseparable. Then P'(x) = 0.

Proposition

Let char K = p, and $P(x) \in K[x]$ irreducible in K[x]. TFAE:

1
$$P(x)$$
 is inseparable,

2
$$P'(x) = 0$$
,
3 $P(x) = Q(x^p)$ for some $Q(x) \in K[x]$.

Proof.

$$1 \Rightarrow 2$$
: By lemma.

Shape of inseparable irreducible polynomials

Proposition

Let char
$$K = p$$
, and $P(x) \in K[x]$ irreducible in $K[x]$. TFAE:
1 $P(x)$ is inseparable,
2 $P'(x) = 0$,
3 $P(x) = Q(x^p)$ for some $Q(x) \in K[x]$.

Proof.

 $1 \Rightarrow 2$: By lemma.

2 \Rightarrow 3: Write $P(x) = \sum_{j} a_{j}x^{j}$. Then $0 = P'(x) = \sum_{j} ja_{j}x^{j-1}$, so $ja_{j} = 0$ for all j, so $a_{j} = 0$ unless j = 0 in K, that is unless $p \mid j$.

$$3 \Rightarrow 1$$
: If $P(x) = Q(x^p)$, then $P'(x) = px^{p-1}Q'(x^p) = 0$ as $p = 0$, so $gcd(P, P') = P$.

Definition

A field is perfect if it has no inseparable extension.

Theorem

- If char K = 0, then K is perfect.
- **2** If char K = p, then K is perfect $\iff K^p = K$.

Remark

If char K = p, then K perfect \iff Frob \in Aut(K). In particular, finite fields are perfect, even though they have char > 0.

Perfect fields

Theorem

- If char K = 0, then K is perfect.
- **2** If char K = p, then K is perfect $\iff K^p = K$.

Proof.

Suppose K not perfect. Then we can find $K \subseteq L$ inseparable, meaning there is $\alpha \in L$ whose min poly $P(x) \in K[x]$ is inseparable, so has common factor with $P' \rightsquigarrow P' = 0$.

If char K = 0, then deg $P' = \deg P - 1$, absurd.

If char K = p and $K^p = K$, then Frob \in Aut(K), so every $a \in K$ has a (unique) *p*-th root $a^{1/p} =$ Frob⁻¹ $(a) \in K$. We know $P(x) = Q(x^p)$, say $P(x) = \sum_j a_j x^{pj}$. But then $P(x) = \sum_j (a_j^{1/p})^p (x^j)^p = \left(\sum_j a_j^{1/p} x^j\right)^p$ not irreducible, absurd.

Theorem

- If char K = 0, then K is perfect.
- 2 If char K = p, then K is perfect $\iff K^p = K$.

Proof.

Conversely, if char K = p and $K^p \subsetneq K$, let $a \in K \setminus K^p$; then $P(x) = x^p - a \in K[x]$ is irreducible, and inseparable since P'(x) = 0, so $L = K[x]/(P(x)) \simeq K(\sqrt[p]{a})$ is an inseparable extension of K.

Separability vs. embeddings

Proposition

Let $K \subseteq E \subseteq L$. If $K \subseteq L$ separable, then $K \subseteq E$ and $E \subseteq L$ separable.

Proof.

 $K \subseteq E$: If $\alpha \in E$, then $\alpha \in L$, so α separable over K.

 $E \subseteq L$: Let $\alpha \in L$ have min poly $P_{\mathcal{K}}(x) \in \mathcal{K}[x]$ over \mathcal{K} and $P_{\mathcal{E}}(x) \in \mathcal{E}[x]$ over \mathcal{E} . Then $P_{\mathcal{E}}(x) | P_{\mathcal{K}}(x)$ which is separable, so $P_{\mathcal{E}}(x)$ cannot have multiple roots in any extension of \mathcal{E} .

Embeddings vs. roots

Let K be a field, and let L, M be extensions of K. A field morphism $f : L \longrightarrow M$ is automatically injective, hence an embedding: $L \simeq \text{Im } f \subseteq M$.

Suppose that L = K[x]/(P(x)) with $P(x) \in K[x]$ irreducible, and let $\alpha = \overline{x} \in L$.

If f is a K-morphism, then $f(\alpha) \in M$ is a root of P(x).

Conversely, if $\beta \in M$ is a root of P(x), then

 \rightsquigarrow K-embeddings of L in $M \leftrightarrow$ Roots of P(x) in M.

Extensions of embeddings vs. roots

Let L = K[x]/(P(x)) with $P(x) = \sum_{j} a_{j}x^{j} \in K[x]$ irreducible, and as previously $\alpha = \overline{x} \in L$. Let also $\iota : K \hookrightarrow M$, and $P_{\iota}(x) = \sum_{j} \iota(a_{j})x^{j} \in M[x]$. We have $K \stackrel{\iota}{\simeq} \iota(K)$, so $P_{\iota}(x)$ is irreducible over $\iota(K)$.

$$L \xrightarrow{?} M$$

$$| \qquad |$$

$$K \xrightarrow{\sim}{\iota} \iota(K)$$

Suppose $\iota' : L \longrightarrow M$ extends ι . Then

$$0 = \iota'(P(\alpha)) = \sum_{j} \iota'(a_j)\iota'(\alpha)^j = P_\iota(\iota'(\alpha)).$$

Extensions of embeddings vs. roots

Let L = K[x]/(P(x)) with $P(x) = \sum_{j} a_{j}x^{j} \in K[x]$ irreducible, and as previously $\alpha = \overline{x} \in L$. Let also $\iota : K \hookrightarrow M$, and $P_{\iota}(x) = \sum_{j} \iota(a_{j})x^{j} \in M[x]$. We have $K \stackrel{\iota}{\simeq} \iota(K)$, so $P_{\iota}(x)$ is irreducible over $\iota(K)$.

Suppose $\iota': L \longrightarrow M$ extends ι . Then

$$0 = \iota'(P(\alpha)) = \sum_{j} \iota'(a_j)\iota'(\alpha)^j = P_\iota(\iota'(\alpha)).$$

Conversely, if $\beta \in M$ is a root of $P_{\iota}(x)$, then

 \rightsquigarrow Extensions of ι to $L \longleftrightarrow$ Roots of $P_{\iota}(x)$ in M.

Theorem

Let K be a field, let Ω be an algebraically closed extension of K (e.g. $\Omega = \overline{K}$), and let L be a finite extension of K. Then $\operatorname{Hom}_{K}(L, \Omega)$ is finite, and $N = \# \operatorname{Hom}_{K}(L, \Omega)$ is independent of Ω and satisfies

 $1 \leqslant N \leqslant [L : K],$ with equality $N = [L : K] \iff K \subseteq L$ is separable.

Theorem

Let $\iota : K \hookrightarrow \Omega$ with Ω algebraically closed, and let L be a finite extension of K. Then the set $\operatorname{Hom}_{\iota}(L, \Omega)$ of embeddings $L \hookrightarrow \Omega$ extending ι is finite, and $N = \# \operatorname{Hom}_{\iota}(L, \Omega)$ is independent of Ω and satisfies $1 \leqslant N \leqslant [L : K],$ with equality $N = [L : K] \iff K \subset L$ is separable.

Proof.

Write $L = K(\alpha_1, \dots, \alpha_r)$. Induction on r to prove that $1 \le N \le [L:K]$ and N = [L:K] if $K \subseteq L$ separable.

If r = 0, then K = L, so $\operatorname{Hom}_{\iota}(L, \Omega) = \{\iota\}$, OK.

Suppose true for r - 1. Let $E = K(\alpha_1, \dots, \alpha_{r-1})$, so $L = E(\alpha_r)$. Then $N_E = \# \operatorname{Hom}_{\iota}(E, \Omega)$ satisfies $1 \leq N_E \leq [E : K]$, so let $\iota_E \in \operatorname{Hom}_{\iota}(E, \Omega)$. Besides $[L : E] = \frac{[L:K]}{[E:K]} < \infty$, so let $P(x) \in E[x]$ min poly of α_r . As $L \simeq_E E[x]/(P(x))$, the number N_{ι_E} of $\iota' : L \hookrightarrow \Omega$ extending ι_E is $N_{\iota_E} = \#$ Roots of $P_{\iota_E}(x)$ in $\Omega \leq \deg P_{\iota_E} = \deg P = [L : E]$, whence $N \leq N_E[L : E] \leq [E : K][L : E] = [L : K]$.

Proof.

Suppose true for r-1. Let $E = K(\alpha_1, \cdots, \alpha_{r-1})$, so $L = E(\alpha_r)$. Then $N_F = \# \operatorname{Hom}_{\ell}(E, \Omega)$ satisfies $1 \leq N_F \leq [E:K]$, so let $\iota_E \in \operatorname{Hom}_{\iota}(E, \Omega)$. Besides $[L : E] = \frac{[L:K]}{[E:K]} < \infty$, so let $P(x) \in E[x]$ min poly of α_r . As $L \simeq_F E[x]/(P(x))$, the number N_{ι_F} of $\iota' : L \hookrightarrow \Omega$ extending ι_F is $N_{L_{E}} = \#$ Roots of $P_{L_{E}}(x)$ in $\Omega \leq \deg P_{L_{E}} = \deg P = [L : E]$, whence $N \leq N_F[L:E] \leq [E:K][L:E] = [L:K]$. If furthermore $K \subseteq L$ is separable, then so are $K \subseteq E \subseteq L$, so $N_F = [E : K]$ by induction and $N_{LF} = [L : E]$ for all $\iota_F \in \operatorname{Hom}_{\iota}(E, \Omega)$ as disc $P_{\iota_F} = \iota_F(\operatorname{disc} P) \neq 0$.

Proof.

If on the contrary $K \subseteq L$ is inseparable, write $L = K(\alpha_1, \dots, \alpha_r)$ with α_1 inseparable over K. Let $K_1 = K(\alpha_1)$, so that $K_1 \simeq_K K[x]/(Q(x))$ where $Q(x) \in K[x]$ is the min poly of α_1 over K. Then disc $Q_{\iota} = \iota(\text{disc } Q) = \iota(0) = 0$, so $\# \operatorname{Hom}_{\iota}(K_1, \Omega) = \# \operatorname{Roots} \text{ of } Q_{\iota} \text{ in } \Omega < \deg Q = [K_1 : K]$ $\rightsquigarrow \# \operatorname{Hom}_{\iota}(L, \Omega) < [K_1 : K][L : K_1] = [L : K].$

Corollary

Let $K \subseteq L \subseteq M$ be finite extensions. Then $K \subseteq M$ is separable iff. $K \subseteq L$ and $L \subseteq M$ are separable.

Proof.

Interlude : group actions
Definition

Let G be a group with identity $1_G \in G$, and let X be a set. A left action of G on X is a map

$$egin{array}{cccc} G imes X & \longrightarrow & X \ (g,x) & \longmapsto & g \cdot x \end{array}$$

such that $g \cdot h \cdot x = gh \cdot x$ and $1_G \cdot x = x$ for all $g, h \in G$ and $x \in X$.

In other words, it is a group morphism from G to the group of bijections from X to itself.

Notation: $G \circlearrowright X$.

Reminder: Group actions

Definition

Let G be a group with identity $1_G \in G$, and let X be a set. A right action of G on X is a map

$$egin{array}{cccc} X imes G & \longrightarrow & X \ (x,g) & \longmapsto & x \cdot g \end{array}$$

such that $x \cdot g \cdot h = x \cdot gh$ and $x \cdot 1_G = x$ for all $g, h \in G$ and $x \in X$.

In other words, it is a group "anti-morphism", i.e. $\phi(gh) = \phi(h)\phi(g)$, from G to the group of bijections from X to itself.

Notation: $X \circlearrowleft G$.

Reminder: Group actions

Definition

Let G be a group with identity $1_G \in G$, and let X be a set. A left action of G on X is a map

$$egin{array}{cccc} G imes X & \longrightarrow & X \ (g,x) & \longmapsto & g \cdot x \end{array}$$

such that $g \cdot h \cdot x = gh \cdot x$ and $1_G \cdot x = x$ for all $g, h \in G$ and $x \in X$.

In other words, it is a group morphism from G to the group of bijections from X to itself.

Example

A Rubik's cube is not a group, but rather a set of configurations acted on by a group of rotations of the faces.

Definition

Let
$$x \in X$$
. The orbit of x is $G \cdot x = \{g \cdot x \mid g \in G\} \subseteq X$.
The stabiliser G_x of x is $\{g \in G \mid g \cdot x = x\} \leq G$.

The action is <u>transitive</u> if for all $x, y \in X$, there exists $g \in G$ such that $g \cdot x = y$, i.e. if there is only one orbit.

The action is <u>free</u> if for all $x \in X$ and $g \in G$, $g \cdot x = x \Longrightarrow g = 1_G$.

Example

The action of the group of motions on the set of configurations of a Rubik's cube is free. It is transitive iff. we only include the configurations of the cube that are reachable without taking the cube apart.

Normal extensions

Normal extensions

Let K be a field, L a finite extension of K, and Ω an algebraically closed extension of K.

 $\operatorname{Aut}_{\kappa}(L)$ acts on $\operatorname{Hom}_{\kappa}(L,\Omega)$ on the right by

$$\iota \cdot \sigma = \iota \circ \sigma$$
 $(\iota \in \operatorname{Hom}_{\kappa}(L, \Omega), \ \sigma \in \operatorname{Aut}_{\kappa}(L)).$

This action is free: $\iota \circ \sigma = \iota \Longrightarrow \sigma = \mathsf{Id}$ since ι is injective.

$$\rightsquigarrow \# \operatorname{Aut}_{\kappa}(L) \leqslant \# \operatorname{Hom}_{\kappa}(L, \Omega).$$

Definition (Normal extension)

The extension $K \subseteq L$ is normal if

$$#\operatorname{Aut}_{K}(L) = #\operatorname{Hom}_{K}(L, \Omega).$$

Definition (Normal extension)

The extension $K \subseteq L$ is <u>normal</u> if

$$#\operatorname{Aut}_{K}(L) = #\operatorname{Hom}_{K}(L, \Omega).$$

Counter-example

Take
$$K = \mathbb{Q} \subset L = \mathbb{Q}(\sqrt[3]{2}) \simeq_{\mathbb{Q}} \mathbb{Q}[x]/(x^3 - 2).$$

Since char = 0, this extension is separable, so $\# \operatorname{Hom}_{\mathcal{K}}(L, \mathbb{C}) = [L : \mathcal{K}] = 3.$

However, $\# \operatorname{Aut}_{\kappa}(L) = \# \{ \operatorname{Id} \} = 1 < 3$, so this extension is not normal.

Theorem

- Let $K \subseteq L$ be a finite extension. TFAE:
- 1 The extension $K \subseteq L$ is normal,
- 2 The action of $Aut_{\kappa}(L)$ on $Hom_{\kappa}(L,\Omega)$ is transitive,
- 3 The elements of $Hom_{\kappa}(L,\Omega)$ all have the same image,
- 4 Whenever an irreducible $P(x) \in K[x]$ has a root in L, it splits into linear factors over L,
- 5 L is a splitting field over K of some $F(x) \in K[x]$.

Counter-example

Take
$$K = \mathbb{Q} \subset L = \mathbb{Q}[x]/(x^3 - 2) \simeq_{\kappa} \mathbb{Q}(\sqrt[3]{2}).$$

- 1 The extension $K \subseteq L$ is not normal.
- 2 Aut_K(L) = {Id} cannot act transitively on Hom_K(L, \mathbb{C}).
- 3 The 3 elements of $\operatorname{Hom}_{\mathcal{K}}(L, \mathbb{C})$ have images $\mathbb{Q}(\sqrt[3]{2}) \subset \mathbb{R}$, $\mathbb{Q}(\zeta_3\sqrt[3]{2}) \not\subset \mathbb{R}$, $\mathbb{Q}(\zeta_3\sqrt[3]{2}) \not\subset \mathbb{R}$, where $\zeta_3 = e^{2\pi i/3}$.
- 4 $P(x) = x^3 2 \in K[x]$ is irreducible over K and has a root in L, but only factors as 1 + 2 over L.
- 5 L is not the splitting field of $x^3 2$ over K.

Characterisation of normal extensions

Theorem

- 1 The extension $K \subseteq L$ is normal,
- 2 The action of $Aut_{\kappa}(L)$ on $Hom_{\kappa}(L,\Omega)$ is transitive,
- 3 The elements of $Hom_{\kappa}(L,\Omega)$ all have the same image,

Proof.

 $1 \Leftrightarrow 2$: Clear.

$$2 \Rightarrow 3: \text{ Let } \iota_1, \iota_2 \in \text{Hom}_{\mathcal{K}}(\mathcal{L}, \Omega). \text{ Then } \iota_2 = \iota_1 \circ \sigma \text{ for some} \\ \sigma \in \text{Aut}_{\mathcal{K}}(\mathcal{L}), \text{ so } \iota_1 = \iota_2 \circ \sigma^{-1}, \text{ so } \text{Im } \iota_1 = \text{Im } \iota_2. \\ 3 \Rightarrow 2: \text{ Let } \iota_1, \iota_2 \in \text{Hom}_{\mathcal{K}}(\mathcal{L}, \Omega). \text{ Then} \\ \mathcal{L} \xrightarrow{\sim} \iota_2 \Rightarrow \text{Im}(\iota_2) = \text{Im}(\iota_1) \xleftarrow{\sim} \iota_1 \mathcal{L} \\ \text{ so } \sigma = \iota_1^{-1} \circ \iota_2 \in \text{Aut}_{\mathcal{K}}(\mathcal{L}) \text{ satisfies } \iota_2 = \iota_1 \circ \sigma. \end{cases}$$

Characterisation of normal extensions

Theorem

- 3 The elements of $Hom_{\kappa}(L,\Omega)$ all have the same image,
- 4 Whenever an irreducible $P(x) \in K[x]$ has a root in L, it splits into linear factors over L,

Proof.

 $3 \Rightarrow 4$: Let $\iota \in \operatorname{Hom}_{K}(L, \Omega), I = \operatorname{Im} \iota \subseteq \Omega$. Let $P(x) \in K[x]$ irreducible have a root in $L \rightsquigarrow \text{root } \beta \in I$. WTP that if $\gamma \in \Omega$ is another root of P(x), then $\gamma \in I$. Write $L = K(\alpha_1, \dots, \alpha_r)$, let $0 \neq F(x) \in K[x]$ such that $F(\alpha_i) = 0$ for all j, and let $S \subseteq \Omega$ be the splitting field of P(x)F(x). Then $F(\iota(\alpha_i)) = 0$ for all j, so $I = K(\iota(\alpha_1), \cdots, \iota(\alpha_r)) \subset S.$ S is a splitting field and β , $\gamma \in S$ are K-conjugate $\rightsquigarrow \gamma = \Phi(\beta)$ for some $\Phi \in Aut_{\mathcal{K}}(S)$. But then $\gamma \in \Phi(I) = \operatorname{Im} \Phi \circ \iota = I \text{ since } \Phi \circ \iota \in \operatorname{Hom}_{\kappa}(L, \Omega).$

Characterisation of normal extensions

Theorem

- 3 The elements of $Hom_{\kappa}(L,\Omega)$ all have the same image,
- 4 Whenever an irreducible $P(x) \in K[x]$ has a root in L, it splits into linear factors over L,
- 5 L is a splitting field over K of some $F(x) \in K[x]$.

Proof.

4 ⇒ 5: Write again $L = K(\alpha_1, \dots, \alpha_r)$. Let $P_j(x) \in K[x]$ min poly of α_j , let $F(x) = \prod_j P_j(x) \in K[x]$, and let $S \subseteq \overline{L}$ be the splitting of F(x) over K. Then $L \subseteq S$; but since the $P_j(x)$ have all their roots in L, $S \subseteq L$. 5 ⇒ 3: If L is the splitting field of $F(x) \in K[x]$, then for

any $\iota \in \operatorname{Hom}_{\mathcal{K}}(L,\Omega)$, $\iota(L) \subseteq \Omega$ is the splitting field of F(x) contained in Ω .

Normal closure

Corollary

Let $K \subseteq L$ finite. There exists a minimal finite $L \subseteq N$ such that $K \subseteq N$ normal. This N is unique up to K-isomorphism.

Proof.

Again write $L = K(\alpha_1, \dots, \alpha_r)$ and let $P_j(x) \in K[x]$ min poly of α_j . Then N is a splitting field of $\prod_j P_j(x)$.

Definition (Normal closure)

This N is the normal closure of $K \subseteq L$.

Example

The normal closure of $K = \mathbb{Q} \subseteq L = \mathbb{Q}(\sqrt[3]{2})$ is $N = \mathbb{Q}(\sqrt[3]{2}, \zeta_3\sqrt[3]{2}, \zeta_3^2\sqrt[3]{2}) = L(\zeta_3)$, where $\zeta_3 = e^{2\pi i/3}$.

Galois extensions

Let K be a field, and $\Omega \supseteq K$ algebraically closed. We have proved that if $K \subseteq L$ finite, then

$$\#\operatorname{Aut}_{\kappa}(L) \underset{\operatorname{Normal}?}{\leqslant} \#\operatorname{Hom}_{\kappa}(L,\Omega) \underset{\operatorname{Separable}?}{\leqslant} [L:K].$$

Definition (Galois extension)

A finite extension $K \subseteq L$ is <u>Galois</u> if # Aut_K(L) = [L : K].

Theorem

- Let $K \subseteq L$ be a finite extension. TFAE:
- 1 $K \subseteq L$ is Galois,
- 2 $K \subseteq L$ is normal and separable,
- 3 $L = splitting field over K of some separable <math>F(x) \in K[x]$,
- 4 For all $\alpha \in L$, we have $\alpha \in K \iff \sigma(\alpha) = \alpha \ \forall \sigma \in Aut_{\kappa}(L)$; in other words, $K \subseteq L^{Aut_{\kappa}(L)}$ is actually an equality,
- 5 The min poly over K of any $\alpha \in L$ is $\prod_{\beta \in \operatorname{Aut}_{K}(L) \cdot \alpha} (x \beta)$, where $\operatorname{Aut}_{K}(L) \cdot \alpha = \{\sigma(\alpha) \mid \sigma \in \operatorname{Aut}_{K}(L)\}$ without multiplicities.

Counter-example

Take
$$K = \mathbb{Q}$$
, $L = \mathbb{Q}(\sqrt[3]{2}) \rightsquigarrow \operatorname{Aut}_{K}(L) = \{\operatorname{Id}\}.$

1
$$\# \operatorname{Aut}_{K}(L) = 1 < 3 = [L : K].$$

- 2 $K \subseteq L$ is not normal.
- 3 $K \subseteq L$ is not the splitting field of $x^3 2$ over K,
- 4 $\sqrt[3]{2} \in L$ is fixed by all the elements of Aut_K(L) = {Id}, yet does not lie in K,
- 5 The min poly over K of $\sqrt[3]{2} \in L$ is not

$$\prod_{\beta\in \operatorname{Aut}_{K}(L)\cdot\sqrt[3]{2}} (x-\beta) = x - \sqrt[3]{2}.$$

Counter-example

Take
$$K = \mathbb{F}_p(t)$$
, $L = \mathbb{F}_p(t^{1/p}) \rightsquigarrow \operatorname{Aut}_K(L) = \{\operatorname{Id}\}.$

- 1 $\# \operatorname{Aut}_{K}(L) = 1$
- 2 $K \subseteq L$ is not separable.
- 3 K ⊆ L is the splitting field of x^p − t = (x − t^{1/p})^p over K but this polynomial is not separable,
- 4 t^{1/p} ∈ L is fixed by all the elements of Aut_K(L) = {Id}, yet does not lie in K,
- 5 The min poly over K of $t^{1/p} \in L$ is not

$$\prod_{\beta\in \operatorname{Aut}_{K}(L)\cdot t^{1/p}} (x-\beta) = x-t^{1/p}.$$

Theorem

- 1 $K \subseteq L$ is Galois,
- 2 $K \subseteq L$ is normal and separable,
- 3 $L = splitting field over K of some separable <math>F(x) \in K[x]$,

Proof.

- $1 \Leftrightarrow 2: \ \mathsf{Clear}.$
- 2 \Rightarrow 3: $K \subseteq L$ normal \rightsquigarrow splitting field of some $F(x) \in K[x]$. For each root $\alpha \in L$ of F(x), let $P_{\alpha}(x)$ be its min poly. Then $P_{\alpha}(x)$ separable, so $K[x] \ni G(x) = \prod_{\text{distinct}} P_{\alpha}(x)$ too, and $K \subseteq L$ is its splitting field.
- $3 \Rightarrow 2$: Splitting fields are normal. A splitting field of a separable polynomial is obtained as a succession of separable extensions, so is separable.

Theorem

1 $K \subseteq L$ is Galois,

4 For all $\alpha \in L$, we have $\alpha \in K \iff \sigma(\alpha) = \alpha \ \forall \sigma \in Aut_{K}(L)$,

5 The min poly over K of any $\alpha \in L$ is $\prod_{\beta \in Aut_K(L) \cdot \alpha} (x - \beta)$.

Proof.

1
$$\Rightarrow$$
 4: Let $K \subseteq E = L^{\operatorname{Aut}_{K}(L)} \subseteq L$, so $\operatorname{Aut}_{K}(L) = \operatorname{Aut}_{E}(L)$.
Then $[L : K] = \# \operatorname{Aut}_{K}(L) = \# \operatorname{Aut}_{E}(L) \leqslant [L : E]$
 $\rightsquigarrow [E : K] = \frac{[L:K]}{[L:E]} \leqslant 1$.
4 \Rightarrow 5: $F_{\alpha}(x) = \prod_{\beta \in \operatorname{Aut}_{K}(L) \cdot \alpha} (x - \beta) \in L[x]$ has α as a root, and
coefficients in $L^{\operatorname{Aut}_{K}(L)} = K$. Conversely, every β must
be a root of the min poly of α over K .

Theorem

2 $K \subseteq L$ is normal and separable,

5 The min poly over K of any $\alpha \in L$ is $\prod_{\beta \in Aut_{K}(L) \cdot \alpha} (x - \beta)$.

Proof.

5 \Rightarrow 2: Let $\alpha \in L$; its min poly is $F_{\alpha}(x) = \prod_{\beta \in \operatorname{Aut}_{K}(L) \cdot \alpha} (x - \beta)$, which has distinct roots $\rightsquigarrow K \subseteq L$ separable. Now suppose $P(x) \in K[x]$ irreducible has a root $\alpha \in L$; then P(x) is the min poly of $\alpha \rightsquigarrow P(x) = F_{\alpha}(x)$ has all its roots in L.

Theorem

- 1 $K \subseteq L$ is Galois,
- 2 $K \subseteq L$ is normal and separable,
- 3 $L = splitting field over K of some separable <math>F(x) \in K[x]$,
- 4 For all $\alpha \in L$, we have $\alpha \in K \iff \sigma(\alpha) = \alpha \ \forall \sigma \in Aut_{K}(L)$,
- 5 The min poly over K of any $\alpha \in L$ is $\prod_{\beta \in Aut_K(L) \cdot \alpha} (x \beta)$.

Theorem

- 1 $K \subseteq L$ is Galois,
- 2 $K \subseteq L$ is normal and separable,
- 3 $L = splitting field over K of some separable <math>F(x) \in K[x]$,
- 4 For all $\alpha \in L$, we have $\alpha \in K \iff \sigma(\alpha) = \alpha \ \forall \sigma \in Aut_{K}(L)$,
- 5 The min poly over K of any $\alpha \in L$ is $\prod_{\beta \in Aut_{K}(L) \cdot \alpha} (x \beta)$.

Remark

The main obstruction to Galois-ness is often normal-ness rather than separability (e.g. in char 0).

If $K \subseteq L$ is separable but not normal, its the normal closure N is still separable over K, so $K \subseteq N$ is Galois over K. It is therefore sometimes called the Galois closure of $K \subseteq L$.

Galois groups

The Galois group of a Galois extension

From now on, we write L/K rather than $K \subseteq L$.

Definition (Galois group)

The <u>Galois group</u> of a Galois extension L/K is

$$\operatorname{Gal}(L/K) = \operatorname{Aut}_{K}(L).$$

Example

$$\mathsf{Gal}(\mathbb{C}/\mathbb{R}) = \{\mathsf{Id}, z \mapsto \overline{z}\} \simeq \mathbb{Z}/2\mathbb{Z}.$$

Let L/K be a Galois extension.

•
$$\# \operatorname{Gal}(L/K) = [L : K].$$

- For all α ∈ L, the minimal polynomial P(x) of α over K has all its roots in L; and whenever β, γ ∈ L are roots of P(x), there exists σ ∈ Gal(L/K) such that σ(β) = γ.
- The elements of Gal(L/K) are automorphisms
 → they preserve algebraic relations over K,
 e.g. if σ ∈ Gal(L/K) and if α ∈ L satisfies F(α) = 0
 where F(x) ∈ K[x], then F(σ(α)) = 0 as well.

Example 1: $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$

Let
$$K = \mathbb{Q}$$
 and $L = \mathbb{Q}(\sqrt{2})$.

- Since both ±√2 ∈ L, L is the splitting field of separable x² − 2 ∈ Q[x] over Q → L is Galois over Q.
- Let G = Gal(L/Q). We have #G = [L : Q] = 2. Id ∈ G → need one other σ ∈ Gal(L/Q), G = {Id, σ} ≃ Z/2Z.
- Any τ ∈ G is completely determined by τ(√2), and τ(√2) = ±√2 → 2 possibilities.
 #G = 2, so both must occur → σ(√2) = -√2, so σ is a + b√2 → a b√2 (a, b ∈ Q).

Let $K = \mathbb{Q}$ and $L = \mathbb{Q}(\sqrt{2})$.

- Since both $\pm \sqrt{2} \in L$, L is the splitting field of separable $x^2 2 \in \mathbb{Q}[x]$ over $\mathbb{Q} \rightsquigarrow L$ is Galois over \mathbb{Q} .
- Let G = Gal(L/Q). We have #G = [L : Q] = 2.
 Id ∈ G → need one other σ ∈ Gal(L/Q),
 G = {Id, σ} ≃ Z/2Z.
- Alternatively, there must exist τ ∈ G taking √2 to its conjugate -√2.

Example 2: $\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}$

Let $K = \mathbb{Q}$ and $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.

- Since both ±√2 and both ±√3 ∈ L, L is the splitting field of separable (x² 2)(x² 3) ∈ Q[x] over Q
 → L is Galois over Q. Let G = Gal(L/Q).
- $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset L$, so $[L : \mathbb{Q}] = [L : \mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}) : \mathbb{Q}]$ where $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$ and $[L : \mathbb{Q}(\sqrt{2})] \leq 2$. If $[L : \mathbb{Q}(\sqrt{2})] < 2$, then $\mathbb{Q}(\sqrt{2}) = L \ni \sqrt{3}$, so $\sqrt{3} = a + b\sqrt{2}$ for some $a, b \in \mathbb{Q}$. Then $3 = (a + b\sqrt{2})^2 = (a^2 + 2b^2) + 2ab\sqrt{2}$, so $a^2 + 2b^2 = 3$ and 2ab = 0, absurd. So $[L : \mathbb{Q}(\sqrt{2})] = 2$, so $\#G = [L : \mathbb{Q}] = 4$.
- Any τ ∈ G is completely determined by τ(√2) = ±√2 and τ(√3) = ±√3 → 2 × 2 = 4 possibilities.
 #G = 4 → all 4 possibilities occur.
 So G ≃ {+, -} × {+, -} ≃ (ℤ/2ℤ) × (ℤ/2ℤ).

Example 2: $\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}$

Let
$$K = \mathbb{Q}$$
 and $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.

•
$$\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset L$$
, so $[L : \mathbb{Q}] = [L : \mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}) : \mathbb{Q}]$
where $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$ and $[L : \mathbb{Q}(\sqrt{2})] \leq 2$.
If $[L : \mathbb{Q}(\sqrt{2})] < 2$, then $\mathbb{Q}(\sqrt{2}) = L \ni \sqrt{3}$,
so $\sqrt{3} = a + b\sqrt{2}$ for some $a, b \in \mathbb{Q}$.
Then $3 = (a + b\sqrt{2})^2 = (a^2 + 2b^2) + 2ab\sqrt{2}$,
so $a^2 + 2b^2 = 3$ and $2ab = 0$, absurd.
So $[L : \mathbb{Q}(\sqrt{2})] = 2$, so $\#G = [L : \mathbb{Q}] = 4$.

Alternatively, there must exist τ₂ ∈ G taking √2 to -√2, and τ₃ taking √3 to -√3. But can we do both simultaneously? E.g. can we move √2 but fix √3? L = splitting field of x² - 3 over Q(√2) → any element of Gal(Q(√2)/Q) extends to an element of Gal(L/Q). Besides, L/Q(√2) Galois, and Gal (L/Q(√2)) ≃ Z/2Z, so we can move √3 as we want without touching √2.

Example 3: $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$

Let $K = \mathbb{Q}$ and $L = \mathbb{Q}(\sqrt[3]{2})$. Let $\alpha_1 = \sqrt[3]{2}$, $\alpha_2 = \zeta_3\sqrt[3]{2}$, $\alpha_3 = \zeta_3^2\sqrt[3]{2}$ be the complex roots of $F(x) = x^3 - 2 \in \mathbb{Q}[x]$, where $\zeta_3 = e^{2\pi i/3}$.

- L/\mathbb{Q} is not Galois! So we consider its Galois closure $N = \mathbb{Q}(\alpha_1, \alpha_2, \alpha_3)$. Let $G = \text{Gal}(N/\mathbb{Q})$; we have $\#G = [N : \mathbb{Q}] = [N : L][L : \mathbb{Q}] \ge 2 \times 3 = 6$.
- Any σ ∈ G must take a root of F(x) ∈ Q[x] to a root of F(x), and is completely characterised by how it permutes α₁, α₂, α₃ → we can view G as a subgroup of S₃ permuting α₁, α₂, α₃.
- Since $\#G \ge 6$, necessarily $G = S_3$.

Remark

If L = splitting field over K of $F(x) \in K[x]$ separable of degree d, then Gal(L/K) can, and should, be thought of as a subgroup of S_d permuting the d roots of F(x) in L.

Example 3: $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$

Let $K = \mathbb{Q}$ and $L = \mathbb{Q}(\sqrt[3]{2})$. Let $\alpha_1 = \sqrt[3]{2}$, $\alpha_2 = \zeta_3\sqrt[3]{2}$, $\alpha_3 = \zeta_3^2\sqrt[3]{2}$ be the complex roots of $F(x) = x^3 - 2 \in \mathbb{Q}[x]$, where $\zeta_3 = e^{2\pi i/3}$.

- L/Q is not Galois! So we consider its Galois closure
 N = Q(α₁, α₂, α₃). Let G = Gal(N/Q); we have
 #G = [N : Q] = [N : L][L : Q] ≥ 2 × 3 = 6.
- Any σ ∈ G must take a root of F(x) ∈ Q[x] to a root of F(x), and is completely characterised by how it permutes α₁, α₂, α₃ → we can view G as a subgroup of S₃ permuting α₁, α₂, α₃.
- Since $\#G \ge 6$, necessarily $G = S_3$.

Remark

The Galois group does NOT preserve real-ness!

In other words, \mathbb{R} is **NOT** normal over \mathbb{Q} !

Example 4: $\mathbb{Q}(\sqrt{5+\sqrt{21}})/\mathbb{Q}$

Let $K = \mathbb{Q}$ and $L = \mathbb{Q}(\alpha)$, where $\alpha = \sqrt{5 + \sqrt{21}}$.

- We have $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{21}) \subseteq L$, with $[\mathbb{Q}(\sqrt{21}):\mathbb{Q}] = 2$ and $[L:\mathbb{Q}(\sqrt{21})] \leqslant 2$. If $[L:\mathbb{Q}(\sqrt{21})] = 1$, then $\alpha = a + b\sqrt{21}$ for some $a, b \in \mathbb{Q}$, so $5 + \sqrt{21} = (a + b\sqrt{21})^2 = (a^2 + 21b^2) + 2ab\sqrt{21}$, so $a^2 + 21b^2 = 5$ and $2ab = 1 \rightsquigarrow a^4 - 5a^2 + 21/4 = 0$, whence $a^2 = \frac{5\pm 2}{2}$, absurd. So $[L:\mathbb{Q}] = 4$.
- α is a root of $P(x) = (x^2 5)^2 21 \in \mathbb{Q}[x]$, so this is its min poly over \mathbb{Q}

 \rightarrow the conjugates of α are α , $-\alpha$, $\beta = \sqrt{5 - \sqrt{21}}$, $-\beta$.

•
$$\alpha\beta = \sqrt{(5 + \sqrt{21})(5 - \sqrt{21})} = \sqrt{4} = 2 \in \mathbb{Q}$$
, so $\beta \in L$,
so L/\mathbb{Q} is Galois.
Let $G = \text{Gal}(L/\mathbb{Q})$; it is a subgroup of order $[L : \mathbb{Q}] = 4$

of S_4 permuting $\pm \alpha$, $\pm \beta$.

Example 4:
$$\mathbb{Q}(\sqrt{5+\sqrt{21}})/\mathbb{Q}$$

Let $K = \mathbb{Q}$ and $L = \mathbb{Q}(\alpha)$, where $\alpha = \sqrt{5 + \sqrt{21}}$. The conjugates of α are α , $-\alpha$, $\beta = \sqrt{5 - \sqrt{21}} = 2/\alpha$, $-\beta$. Any $\tau \in G$ is determined by $\tau(\alpha)$, which is one of 4 the conjugates of α

 \rightsquigarrow as #G = 4, all possibilities must occur.

• If
$$\tau(\alpha) = \alpha$$
, then $\tau = \mathsf{Id}$ fixes $\alpha, -\alpha, \beta, -\beta$.

• If
$$\tau(\alpha) = -\alpha$$
, then $\tau(-\alpha) = -\tau(\alpha) = \alpha$,
 $\tau(\beta) = \tau(2/\alpha) = \tau(2)/\tau(\alpha) = 2/-\alpha = -\beta$
 $\tau(-\beta) = -\tau(\beta) = \beta$.

• If
$$\tau(\alpha) = \beta$$
, then $\tau(-\alpha) = -\tau(\alpha) = -\beta$,
 $\tau(\beta) = \tau(2/\alpha) = 2/\beta = \alpha$, $\tau(-\beta) = -\tau(\beta) = -\alpha$.

• If
$$\tau(\alpha) = -\beta$$
, then $\tau(-\alpha) = -\tau(\alpha) = \beta$,
 $\tau(\beta) = \tau(2/\alpha) = 2/-\beta = -\alpha$, $\tau(-\beta) = -\tau(\beta) = \alpha$.

Conclusion: $G = V_4 \simeq (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}).$

Example 4:
$$\mathbb{Q}(\sqrt{5+\sqrt{21}})/\mathbb{Q}$$

Let
$$K = \mathbb{Q}$$
 and $L = \mathbb{Q}(\alpha)$, where $\alpha = \sqrt{5 + \sqrt{21}}$.

Remark

The Galois group of a splitting field is the group of permutations of the roots that preserve the relations between these roots: In this example, $-\alpha = -(\alpha)$ and $\alpha\beta = 2$.

Nicolas Mascot Galois theory

The Galois correspondence: Statement and proof
Main slide of the module!

Theorem (Galois correspondence, FUNDAMENTAL)

Let L/K be a finite Galois extension, G = Gal(L/K), $\mathcal{E} = \{ \text{interm. exts. } K \subseteq E \subseteq L \}, \text{ and } \mathcal{H} = \{ \text{subgroups of } G \}.$ 1 For all $E \in \mathcal{E}$, the extension L/E is Galois. 2 The maps $\begin{array}{ccc} \mathcal{H} & \to & \mathcal{E} \\ \mathcal{H} & \mapsto & \mathcal{L}^{\mathcal{H}} \end{array} \text{ and } \begin{array}{ccc} \mathcal{E} & \to & \mathcal{H} \\ \mathcal{E} & \mapsto & \mathsf{Gal}(\mathcal{L}/\mathcal{E}) \end{array}$ are inclusion-reversing bijections, and inverses of each other. *3* If $E \in \mathcal{E}$ and $H \in \mathcal{H}$ correspond to each other, then [L: E] = #H and [E: K] = [G: H].4 Let $\sigma \in G$. If $E \in \mathcal{E}$ corresponds to $H \in \mathcal{H}$, then $\sigma(E)$ corresponds to $\sigma H \sigma^{-1} = \{ \sigma h \sigma^{-1} \mid h \in H \}.$ 5 If $E \in \mathcal{E}$ and $H \in \mathcal{H}$ correspond to each other, then E/K is Galois \iff H is a normal subgroup of G. In this case, $Gal(E/K) \simeq G/H$ via $\sigma \mapsto \sigma_{|F}$.

Theorem (Galois correspondence)

Let L/K be a finite Galois extension, G = Gal(L/K), $\mathcal{E} = \{ interm. exts. K \subseteq E \subseteq L \}$, and $\mathcal{H} = \{ subgroups of G \}$. 1 For all $E \in \mathcal{E}$, the extension L/E is Galois.

L/K is Galois, so L is the splitting field over K of some separable $F(x) \in K[x]$, say $L = K(\alpha_1, \alpha_2, \cdots)$ where the α_j are the roots of F(x).

Then for all $E \in \mathcal{E}$, we also have $L = E(\alpha_1, \alpha_2, \cdots)$, so L is the splitting field over E of $F(x) \in E[x]$.

Linear lemma

Lemma

Let K field, and $H \leq \operatorname{Aut}(K)$. Let $a_{i,j} \in K$ such that the equations $\sum_j a_{1,j}x_j = \sum_j a_{2,j}x_j = \cdots = 0$ has a nonzero solution $x_1, x_2, \cdots \in K$, and such that the equations are invariant by H. Then they have a nonzero solution in K^H .

Proof.

Let x_1, x_2, \cdots nonzero solution with as many $x_j = 0$ as possible, and let j_0 such that $x_{j_0} \neq 0$. WLOG, $x_{j_0} = 1$. Let $\sigma \in H$. Then $\sigma(x_1), \sigma(x_2), \cdots$ is also a solution, and so is $y_1 = \sigma(x_1) - x_1, y_2 = \sigma(x_2) - x_2, \cdots$. If $x_j = 0$, then $y_j = \sigma(0) - 0 = 0$; and $y_{j_0} = \sigma(1) - 1 = 0$. Thus $y_j = 0$ for all j, so x_j fixed by all $\sigma \in H$.

Theorem (Galois correspondence)

2 The maps
$$\Phi: \begin{array}{ccc} \mathcal{H} & \to & \mathcal{E} \\ \mathcal{H} & \mapsto & L^{\mathcal{H}} \end{array}$$
 and $\Psi: \begin{array}{ccc} \mathcal{E} & \to & \mathcal{H} \\ \mathcal{E} & \mapsto & \mathsf{Gal}(L/\mathcal{E}) \end{array}$ are inclusion-reversing bijections, and inverses of each other.

That Φ and Ψ are inclusion-reversing is clear.

Let
$$E \in \mathcal{E}$$
; then L/E Galois, so $E = L^{\text{Gal}(L/E)} = L^{\Psi(E)} = \Phi(\Psi(E)).$

Proof of part 2

Theorem (Galois correspondence)

2 The maps
$$\Phi$$
: $\begin{array}{ccc} \mathcal{H} & \rightarrow & \mathcal{E} \\ \mathcal{H} & \mapsto & L^{\mathcal{H}} \end{array}$ and Ψ : $\begin{array}{ccc} \mathcal{E} & \rightarrow & \mathcal{H} \\ \mathcal{E} & \mapsto & \mathsf{Gal}(L/\mathcal{E}) \end{array}$ are inclusion-reversing bijections, and inverses of each other.

Let
$$H \in \mathcal{H}$$
, and $H' = \Psi(\Phi(H)) = \operatorname{Gal}(L/L^H)$. Clearly $H \leq H'$.
Let $n = \#H$, let $\alpha_1, \dots, \alpha_{n+1} \in L$, and consider the n
equations $\sum_{j=1}^{n+1} \sigma(\alpha_j) x_j = 0$, $\sigma \in H$. That's $\#H = n$ equations
in $n+1$ unknowns, so nonzero solution $x_1, \dots, x_{n+1} \in L$.

Equations are invariant by *H*; by lemma, may assume
$$x_1, \dots, x_{n+1} \in L^H$$
. Take $\sigma = \operatorname{Id}: \sum_{j=1}^{n+1} x_j \alpha_j = 0$
 $\rightsquigarrow [L:L^H] < n+1$. But L/L^H Galois
 $\rightsquigarrow \#H' = \#\operatorname{Gal}(L/L^H) = [L:L^H] \leqslant n = \#H$
 $\rightsquigarrow H = H'$.

Theorem (Galois correspondence)

Let L/K be a finite Galois extension, G = Gal(L/K), $\mathcal{E} = \{\text{interm. exts. } K \subseteq E \subseteq L\}$, and $\mathcal{H} = \{\text{subgroups of } G\}$. 3 If $E \in \mathcal{E}$ and $H \in \mathcal{H}$ correspond to each other, then [L:E] = #H and [E:K] = [G:H].

L/E is Galois, so $[L:E] = \# \operatorname{Gal}(L/E) = \#H$.

Therefore
$$[G:H] = \frac{\#G}{\#H} = \frac{\#\operatorname{Gal}(L/K)}{\#\operatorname{Gal}(L/E)} = \frac{[L:K]}{[L:E]} = [E:K].$$

Proof of part 4

Theorem (Galois correspondence)

Let L/K be a finite Galois extension, G = Gal(L/K), $\mathcal{E} = \{ interm. exts. K \subseteq E \subseteq L \}$, and $\mathcal{H} = \{ subgroups of G \}$. 4 Let $\sigma \in G$. If $E \in \mathcal{E}$ corresponds to $H \in \mathcal{H}$, then $\sigma(E)$ corresponds to $\sigma H \sigma^{-1} = \{ \sigma h \sigma^{-1} \mid h \in H \}$.

Since
$$H = \operatorname{Gal}(L/E)$$
,
 $\tau \in \operatorname{Gal}(L/\sigma(E)) \iff \forall e \in E, \ \tau(\sigma(e)) = \sigma(e)$
 $\iff \forall e \in E, \ \sigma^{-1}\tau\sigma(e) = e$
 $\iff \sigma^{-1}\tau\sigma \in H$
 $\iff \tau \in \sigma H \sigma^{-1}$.

A new understanding of normal

Lemma

Let L/K Galois, and let $E \in \mathcal{E}$. Then

$$\mathsf{E}/\mathsf{K}$$
 Galois $\Longleftrightarrow \sigma(\mathsf{E}) = \mathsf{E}$ for all $\sigma \in \mathsf{Gal}(\mathsf{L}/\mathsf{K})$.

Proof.

E/K separable since L/K is, so E/K Galois iff. normal.

- ⇒: If E/K normal, then E = splitting field over K of some $F(x) \in K[x]$, so $E = K(\alpha_1, \alpha_2, \cdots)$ where α_j roots of F(x) in L. This description is invariant by Gal(L/K).
- $\Leftarrow: \text{Let } P(x) \in K[x] \text{ irreducible over } K \text{ have a root } \alpha \in E.$ $L/K \text{ normal, } \alpha \in L, \text{ so } P(x) \text{ has all its roots in } L;$ and if $\beta \in L$ is such a root, then $\beta = \sigma(\alpha)$ for some $\sigma \in \text{Gal}(L/K)$. But then $\beta \in \sigma(E) = E$, so P(x) has all its roots in E, so E/K normal.

Proof of part 5

Theorem (Galois correspondence)

5 If $E \in \mathcal{E}$ and $H \in \mathcal{H}$ correspond to each other, then E/K is Galois $\iff H$ is a <u>normal</u> subgroup of G. In this case, $Gal(E/K) \simeq G/H$ via $\sigma \mapsto \sigma_{|E}$.

By lemma, E/K Galois $\iff \forall \sigma \in G, \sigma(E) = E$ $\iff \forall \sigma \in G, \sigma H \sigma^{-1} = H$ $\iff H$ normal in G.

Suppose this is the case. Then $\begin{array}{ccc} \operatorname{Gal}(L/K) & \longrightarrow & \operatorname{Gal}(E/K) \\ \sigma & \longmapsto & \sigma_{|E} \end{array}$ well-defined since each σ stabilises E, and group morphism, whose kernel is $H \rightsquigarrow$ induces injection $G/H \longrightarrow \operatorname{Gal}(E/K)$. As $\#(G/H) = [G:H] = [E:K] = \#\operatorname{Gal}(E/K)$, actually bijection.

The Galois correspondence: Practice by examples

Example 1: $\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}$

$$\begin{split} \mathcal{L} &= \mathbb{Q}(\sqrt{2},\sqrt{3}) \text{ is Galois over } \mathbb{Q} \text{ with Galois group} \\ \mathcal{G} &= \mathsf{Gal}(\mathcal{L}/\mathbb{Q}) = \{\mathsf{Id},\sigma_2,\sigma_3,\sigma_2\sigma_3\} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \text{ where} \\ \sigma_2(\sqrt{2}) &= -\sqrt{2}, \ \sigma_2(\sqrt{3}) = \sqrt{3}, \\ \sigma_3(\sqrt{2}) &= \sqrt{2}, \ \sigma_3(\sqrt{3}) = -\sqrt{3}. \end{split}$$

Galois correspondence:

Let $H = \{ Id, \sigma_2 \}$; the corresponding E is $L^H = \mathbb{Q}(\sqrt{3})$. Since G is Abelian, H is normal in G, so E/\mathbb{Q} is Galois, and $Gal(E/\mathbb{Q}) = G/H = \{ \{ Id, \sigma_2 \}, \{ \sigma_3, \sigma_2 \sigma_3 \} \} \simeq \mathbb{Z}/2\mathbb{Z}$. Let $K = \mathbb{Q}$, $L = \mathbb{Q}(\sqrt[3]{2})$. $[L : \mathbb{Q}] = 3$, so $Gal(L/\mathbb{Q}) = \mathbb{Z}/3\mathbb{Z}$ which has no non-trivial subgroups, so there are no non-trivial intermediate subfields.

Let $K = \mathbb{Q}$, $L = \mathbb{Q}(\sqrt[3]{2})$. $[L : \mathbb{Q}] = 3$, so $Gal(L/\mathbb{Q}) = \mathbb{Z}/3\mathbb{Z}$ which has no non-trivial subgroups, so there are no non-trivial intermediate subfields.

WRONG! L/\mathbb{Q} is not Galois, so the correspondence may not apply. But it applies to the extension N/\mathbb{Q} , where $N = \mathbb{Q}(\sqrt[3]{2}, \zeta_3)$ is the Galois closure of L over \mathbb{Q} .

Example 2: $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$

 $\begin{aligned} \mathsf{Gal}(N/\mathbb{Q}) \simeq S_3 \text{ permuting conjugates} \\ \alpha_1 = \sqrt[3]{2}, \quad \alpha_2 = \zeta_3 \sqrt[3]{2}, \quad \alpha_3 = \zeta_3^2 \sqrt[3]{2}, \end{aligned}$

→ subgroup diagram:

where $A_3 = \{ \mathsf{Id}, (1, 2, 3), (1, 3, 2) \} \simeq \mathbb{Z}/3\mathbb{Z}$ is the alternate subgroup of S_3 .

Example 2: $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$

 $H = \{ \text{Id}, (2,3) \}$ has order 2 and index 3, so $E = N^H$ has $[E : \mathbb{Q}] = 3$ and [N : E] = 2. α_1 is fixed by H, so $\alpha_1 \in E$, so $\mathbb{Q}(\alpha_1) \subseteq E$. By tower law applied to $\mathbb{Q} \subseteq \mathbb{Q}(\alpha_1) \subseteq E$, actually $E = \mathbb{Q}(\alpha_1) = L$.

Let us now determine $F = N^{A_3}$. We have $[F : \mathbb{Q}] = 2$ and [N : F] = 3. Observe that $\zeta_3 = \frac{\alpha_2}{\alpha_1} = \frac{\alpha_3}{\alpha_2} = \frac{\alpha_1}{\alpha_3}$ is fixed by H, so $\mathbb{Q}(\zeta_3) \subseteq F$. Also note that α_3 root of irreducible $x^2 + x + 1 = \frac{x^3 - 1}{x - 1} \in \mathbb{Q}[x]$ $\rightsquigarrow [\mathbb{Q}(\zeta_3) : \mathbb{Q}] = 2$, so $F = \mathbb{Q}(\zeta_3)$ by tower law.

Example 2: $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$

For each intermediate E, N/E is Galois (actually splitting field of $x^3 - 2$ over E). Only A_3 is normal in S_3 , so only $\mathbb{Q}(\zeta_3)$ is Galois over $K = \mathbb{Q}$.

In fact, the other subgroups $\{\mathsf{Id},(1,2)\}, \quad \{\mathsf{Id},(1,3)\}, \quad \{\mathsf{Id},(2,3)\}$ are group-conjugate to each other in S_3 , so that the corresponding intermediate extensions

 $\mathbb{Q}(\alpha_3), \mathbb{Q}(\alpha_2), \mathbb{Q}(\alpha_1)$ are Galois-conjugate to each other.

Example 3:
$$\mathbb{Q}(\sqrt{5+\sqrt{21}})/\mathbb{Q}$$

Let $L = \mathbb{Q}(\alpha)$, where $\alpha = \sqrt{5 + \sqrt{21}}$. We know that Gal $(L/\mathbb{Q}) \simeq V_4$ acting on conjugates α , $-\alpha$, $\beta = 2/\alpha$, $-\beta$. Let $\sigma_1 : \alpha \mapsto -\alpha$, $\sigma_2 : \alpha \mapsto \beta$, $\sigma_3 : \alpha \mapsto -\beta$. As $V_4 \simeq (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$, subgroup diagram

Example 3: $\mathbb{Q}(\sqrt{5}+\sqrt{21})/\mathbb{Q}$

For i = 1, 2, 3, write $H_i = \{ Id, \sigma_i \}$ and $E_i = L^{H_i}$. We have $[E_i : \mathbb{Q}] = [G : H_i] = 2$, $[L : E_i] = \#H_i = 2$.

Example 3: $\mathbb{Q}(\sqrt{5+\sqrt{21}})/\mathbb{Q}$

 $\sigma_1 : \alpha \mapsto -\alpha$ fixes $\alpha^2 = 5 + \sqrt{21}$, so $\mathbb{Q}(\alpha^2) = \mathbb{Q}(\sqrt{21}) \subseteq E_1$, so $E_1 = \mathbb{Q}(\sqrt{21})$ by degree.

 $\sigma_2 : \alpha \leftrightarrow \beta$ fixes $\alpha\beta = 2$, so $\mathbb{Q}(\alpha\beta) = \mathbb{Q} \subseteq E_2$, useless; but σ_2 also fixes $\alpha + \beta$, and $(\alpha + \beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta = 14$, so $\sqrt{14} \in E_2$, so $E_2 = \mathbb{Q}(\sqrt{14})$ by degree.

 $\sigma_3: \alpha \leftrightarrow -\beta$ fixes $\alpha - \beta$; as $(\alpha - \beta)^2 = 6$, $E_3 = \mathbb{Q}(\sqrt{6})$.

Gal(L/\mathbb{Q}) Abelian \rightsquigarrow all subgroups normal \rightsquigarrow all E Galois $/\mathbb{Q}$. We see $L = \mathbb{Q}(\sqrt{21}, \sqrt{14}, \sqrt{6})$. Yet $[L : \mathbb{Q}] = 4$ not 8; in fact, any two generators suffice, e.g. $\sqrt{6} = \frac{\sqrt{21}\sqrt{14}}{7} \in \mathbb{Q}(\sqrt{14}, \sqrt{21})$.

Example 4: $\mathbb{Q}(\sqrt{5+\sqrt{15}})/\mathbb{Q}$

Let $L = \mathbb{Q}(\alpha)$, where $\alpha = \sqrt{5} + \sqrt{15}$. We have $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{15}) \subseteq L$, and $\alpha \notin \mathbb{Q}(\sqrt{15}) \rightsquigarrow [L:\mathbb{Q}] = 4$ $\rightsquigarrow \alpha$ has min poly $(x^2 - 5)^2 - 15 \in \mathbb{Q}[x]$ over \mathbb{Q} $\rightsquigarrow \alpha$ has conjugates $\pm \alpha, \pm \beta$ over \mathbb{Q} , where $\beta = \sqrt{5} - \sqrt{15}$. This time, $\alpha\beta = \sqrt{10} \notin \mathbb{Q}$, so not clear whether $\beta \in L$. Suppose $\beta \in L$. Then L/\mathbb{Q} Galois, $Gal(L/\mathbb{Q})$ of order 4, and $E = \mathbb{Q}(\sqrt{15})$ corresponds to a subgroup $H = \{ \mathsf{Id}, \sigma \}$. As $\alpha^2 = 5 + \sqrt{15} \in E$, $\sigma(\alpha^2) = \alpha^2$, so $\sigma(\alpha) = \pm \alpha$. $\alpha \notin E$ lest L = E, so $\sigma(\alpha) = -\alpha$. Besides, σ permutes $\pm \alpha$, $\pm \beta$ injectively, so $\sigma(\beta) = \pm \beta$. If $\sigma(\beta) = \beta$, then $\beta \in E$, whereas $[\mathbb{Q}(\beta) : \mathbb{Q}] = 4$, absurd. If $\sigma(\beta) = -\beta$, then $\sqrt{10} = \alpha\beta \in E = \mathbb{Q}(\sqrt{15})$, absurd. So $\beta \notin L$.

Example 4: $\mathbb{Q}(\sqrt{5+\sqrt{15}})/\mathbb{Q}$

Since $\beta \notin L$, L not Galois over \mathbb{Q} ; its Galois closure over \mathbb{Q} is $N = \mathbb{Q}(\pm \alpha, \pm \beta) = L(\beta) \supseteq L$.

As $\beta^2 = 5 - \sqrt{15} \in L$, $[N : L] \leq 2$, so [N : L] = 2; thus $\# \operatorname{Gal}(N/\mathbb{Q}) = [N : \mathbb{Q}] = 8$, subgroup of $S_4 \circlearrowright \pm \alpha, \pm \beta$.

 $\operatorname{Gal}(N/\mathbb{Q})$ preserves negatives, so preserves square

so contained in symmetry group D_8 of the square. But $\#D_8 = 8$, so $\operatorname{Gal}(N/\mathbb{Q}) = D_8$.

Example 4:
$$\mathbb{Q}(\sqrt{5+\sqrt{15}})/\mathbb{Q}$$

Name the elements of $Gal(N/\mathbb{Q})$:

meaning $\sigma_{\alpha} : \alpha \mapsto -\alpha, \ -\alpha \mapsto \alpha, \ \beta \mapsto \beta, \ -\beta \mapsto -\beta$ and $\rho : \alpha \mapsto \beta \mapsto -\alpha \mapsto -\beta \mapsto \alpha$, etc. The central symmetry is $\sigma_{\alpha}\sigma_{\beta} = \sigma_{\beta}\sigma_{\alpha} = \tau\tau' = \tau'\tau = \rho^2$.

Example 4: $\mathbb{Q}(\sqrt{5+\sqrt{15}})/\mathbb{Q}$

By Lagrange, possible subgroup orders 2 and 4. $\#H = 2 \rightsquigarrow H = \{ Id, \gamma \} \simeq \mathbb{Z}/2\mathbb{Z}, \gamma \text{ of order } 2.$ $\#H = 4 \rightsquigarrow \text{ either } H = \{ Id, \gamma, \gamma^2, \gamma^3 \} \simeq \mathbb{Z}/4\mathbb{Z}, \gamma \text{ of order } 4,$ or $H = \{ Id, \gamma, \gamma', \gamma\gamma' \} \simeq (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}), \gamma \text{ and } \gamma' \text{ of order } 2$ and commute.

→ Subgroup diagram:

Example 4: $\mathbb{Q}(\sqrt{5+\sqrt{15}})/\mathbb{Q}$

The group-conjugates of σ_{α} are σ_{α} and σ_{β} , so the subgroups $\{ \text{Id}, \sigma_{\alpha} \}$ and $\{ \text{Id}, \sigma_{\beta} \}$ are not normal, and are conjugate to each other (by ρ). Correspondingly, $\mathbb{Q}(\beta)$ and $\mathbb{Q}(\alpha)$ are not Galois over \mathbb{Q} , and are switched by ρ .

Similarly, $\{Id, \tau\}$ and $\{Id, \tau'\}$ are conjugate (by ρ again); correspondingly, $\mathbb{Q}(\alpha + \beta)$ and $\mathbb{Q}(\alpha - \beta)$ are not Galois over \mathbb{Q} , and are switched by ρ .

All the other subgroups are normal; correspondingly, all the other subfields are Galois over \mathbb{Q} .

Application to cyclotomy

Complex *N*-th roots of unity

Fix
$$N \in \mathbb{N}$$
. Let $\zeta_N = e^{2\pi i/N} \in \mathbb{C}$.

Definition (Root of 1)

A (complex) N-th root of unity is a $z \in \mathbb{C}$ such that $z^N = 1$.

These are the ζ_N^k , $k = 0, 1, \dots, N-1$. They form a subgroup μ_N of \mathbb{C}^{\times} , isomorphic to $\mathbb{Z}/N\mathbb{Z}$ by $\mathbb{Z}/N\mathbb{Z} \ni k \longleftrightarrow \zeta_N^k \in \mu_N$. They have |z| = 1, so $z^{-1} = \overline{z}$.

Definition (Primitive root of 1)

 $z \in \mu_N$ is primitive if $z^M \neq 1$ for all $\mathbb{N} \ni M < N$.

Example (N=4)

The 4th roots of unity are $1 = \zeta_4^0$, $i = \zeta_4$, $-1 = \zeta_4^2$, $-i = \zeta_4^3$. Only *i* and -i are primitive.

Complex *N*-th roots of unity

These are the ζ_N^k , $k = 0, 1, \dots, N-1$. They form a subgroup μ_N of \mathbb{C}^{\times} , isomorphic to $\mathbb{Z}/N\mathbb{Z}$ by $\mathbb{Z}/N\mathbb{Z} \ni k \longleftrightarrow \zeta_N^k \in \mu_N$. They have |z| = 1, so $z^{-1} = \overline{z}$.

Definition (Primitive root of 1)

 $z \in \mu_N$ is primitive if $z^M \neq 1$ for all $\mathbb{N} \ni M < N$.

Example (N=4)

The 4th roots of unity are $1 = \zeta_4^0$, $i = \zeta_4$, $-1 = \zeta_4^2$, $-i = \zeta_4^3$. Only *i* and -i are primitive.

Proposition

$$\zeta_N^k$$
 is a primitive N-th root of $1 \Longleftrightarrow \gcd(k, N) = 1$
 $\iff k \in (\mathbb{Z}/N\mathbb{Z})^{\times}.$

Unofficial notation: μ_N^{\times} .

Cyclotomic polynomials

Let $z \in \mu_N$. Then z root of $x^N - 1 \in \mathbb{Q}[x]$, so algebraic $/\mathbb{Q}$. But $x^N - 1$ is usually not the min poly!

Definition (Cyclotomic polynomial) The <u>N-th cyclotomic polynomial</u> is $\Phi_N(x) = \prod_{z \in \mu_N^{\times}} (x - z) = \prod_{k \in (\mathbb{Z}/N\mathbb{Z})^{\times}} (x - \zeta_N^k).$

Theorem

$$\Phi_N(x) \in \mathbb{Z}[x]$$
, and is irreducible over \mathbb{Q} .

Proposition

$$x^N - 1 = \prod_{d \mid N} \Phi_d(x).$$

Nicolas Mascot Galois theory

Cyclotomic polynomials

Theorem

$\Phi_N(x) \in \mathbb{Z}[x]$, and is irreducible over \mathbb{Q} .

Proposition

$$x^N - 1 = \prod_{d|N} \Phi_d(x).$$

Example

For
$$p \in \mathbb{N}$$
 prime, $x^p - 1 = \Phi_1(x)\Phi_p(x) = (x - 1)\Phi_p(x)$
 $\rightsquigarrow \Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + \dots + x + 1.$

Example

$$\Phi_9(x) = \frac{x^9 - 1}{\Phi_1(x)\Phi_3(x)} = \frac{x^9 - 1}{(x - 1)(x^2 + x + 1)} = x^6 + x^3 + 1.$$

Definition

The <u>N-th cyclotomic extension</u> is $\mathbb{Q}(\zeta_N) = \mathbb{Q}(\mu_N)$.

$$[\mathbb{Q}(\zeta_N):\mathbb{Q}] = \deg \Phi_N(x) = \#\mu_N^{\times} = \#(\mathbb{Z}/N\mathbb{Z})^{\times} = \phi(N).$$

 $\mathbb{Q}(\zeta_N) \supset \mu_N$ is splitting field $/ \mathbb{Q}$ of $x^N - 1$, and of $\Phi_N(x) \sim \mathbb{Q}(\zeta_N)/\mathbb{Q}$ is Galois.

Theorem

 $\operatorname{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q})$ is canonically isomorphic to $(\mathbb{Z}/N\mathbb{Z})^{\times}$.

Cyclotomic extensions

Theorem

 $\operatorname{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q})$ is canonically isomorphic to $(\mathbb{Z}/N\mathbb{Z})^{\times}$.

Proof.

Let $\sigma \in \text{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q})$. Determined by $\sigma(\zeta_N)$, which is a root of $\Phi_N(x) \rightsquigarrow$ at most $\phi(n)$ choices \rightsquigarrow all must occur. For each $k \in (\mathbb{Z}/N\mathbb{Z})^{\times}$, let $\sigma_k : \zeta_N \mapsto \zeta_N^k$. Then for any $z \in \mu_N$, say $z = \zeta_N^j$, we have $\sigma_k(z) = \sigma_k(\zeta_N^j) = \sigma_k(\zeta_N)^j = (\zeta_N^k)^j = \zeta_N^{kj} = (\zeta_N^j)^k = z^k$. Therefore $\sigma_j \sigma_k = (z \mapsto z^k \mapsto (z^k)^j = z^{jk}) = \sigma_{jk}$.

Example

Complex conjugation is $\sigma_{-1}: z \mapsto z^{-1} = \overline{z}$.

Aside: Abelian extensions (NON-EXAMINABLE)

Definition (Abelian extension)

An <u>Abelian extension</u> is a Galois extension whose Galois group is Abelian.

So cyclotomic fields are Abelian extensions of \mathbb{Q} .

Suppose $\mathbb{Q} \subseteq E \subseteq \mathbb{Q}(\zeta_N)$. Then *E* corresponds to $H \leq G = \text{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q})$. Since *G* is Abelian, *H* is automatically normal; so E/\mathbb{Q} is Galois and $\text{Gal}(E/\mathbb{Q}) \simeq G/H$ is still Abelian. Conversely,

Theorem (Kronecker-Weber)

If K is an Abelian extension of \mathbb{Q} , then there exists $N \in \mathbb{N}$ such that $K \subseteq \mathbb{Q}(\zeta_N)$.

Example

For all
$$n \in \mathbb{Z}$$
, $\mathbb{Q}(\sqrt{n}) \subseteq \mathbb{Q}(\zeta_{4n})$.

Let
$$L = \mathbb{Q}(\zeta_9)$$
, $G = \operatorname{Gal}(L/\mathbb{Q})$.
The min poly of ζ_9 is $\Phi_9(x) = x^6 + x^3 + 1$.
 $[L : \mathbb{Q}] = 6 = \phi(9)$, $G \simeq (\mathbb{Z}/9\mathbb{Z})^{\times} = \{1, 2, 4, -4, -2, -1\}$.
We observe that $(\mathbb{Z}/9\mathbb{Z})^{\times}$ is cyclic, generated by 2.
 $\mathbb{Z}/6\mathbb{Z} \xleftarrow{\sim} (\mathbb{Z}/9\mathbb{Z})^{\times} \xleftarrow{\sim} G$

$$m \longleftrightarrow 2^m \longleftrightarrow \sigma_{2^m}$$
Let $L = \mathbb{Q}(\zeta_9)$, $G = \operatorname{Gal}(L/\mathbb{Q})$. The min poly of ζ_9 is $\Phi_9(x) = x^6 + x^3 + 1$. $[L : \mathbb{Q}] = 6 = \phi(9)$, $G \simeq (\mathbb{Z}/9\mathbb{Z})^{\times} = \{1, 2, 4, -4, -2, -1\}$. We observe that $(\mathbb{Z}/9\mathbb{Z})^{\times}$ is cyclic, generated by 2.

$$\mathbb{Z}/6\mathbb{Z} \stackrel{\sim}{\longleftrightarrow} (\mathbb{Z}/9\mathbb{Z})^{\times} \stackrel{\sim}{\longleftrightarrow} G$$

$$m \longleftrightarrow 2^m \longleftrightarrow \sigma_{2^m}$$

Subgroup diagram:

Let $L = \mathbb{Q}(\zeta_9)$, $G = \operatorname{Gal}(L/\mathbb{Q})$. The min poly of ζ_9 is $\Phi_9(x) = x^6 + x^3 + 1$. $[L : \mathbb{Q}] = 6 = \phi(9)$, $G \simeq (\mathbb{Z}/9\mathbb{Z})^{\times} = \{1, 2, 4, -4, -2, -1\}$. We observe that $(\mathbb{Z}/9\mathbb{Z})^{\times}$ is cyclic, generated by 2.

$$\mathbb{Z}/6\mathbb{Z} \stackrel{\sim}{\longleftrightarrow} (\mathbb{Z}/9\mathbb{Z})^{\times} \stackrel{\sim}{\longleftrightarrow} G$$

Subgroup diagram:

Let $L = \mathbb{Q}(\zeta_9)$, $G = \operatorname{Gal}(L/\mathbb{Q})$. The min poly of ζ_9 is $\Phi_9(x) = x^6 + x^3 + 1$. $[L : \mathbb{Q}] = 6 = \phi(9)$, $G \simeq (\mathbb{Z}/9\mathbb{Z})^{\times} = \{1, 2, 4, -4, -2, -1\}$. We observe that $(\mathbb{Z}/9\mathbb{Z})^{\times}$ is cyclic, generated by 2.

$$\mathbb{Z}/6\mathbb{Z} \stackrel{\sim}{\longleftrightarrow} (\mathbb{Z}/9\mathbb{Z})^{\times} \stackrel{\sim}{\longleftrightarrow} G$$

Subgroup diagram:

$$\begin{split} \mathcal{L}^{H_3} &\ni \zeta_9 + \zeta_9^4 + \zeta_9^{-2} = \frac{\zeta_3^3 + \zeta_9^6 + 1}{\zeta_9^2} = 0, \text{ useless.} \\ \text{But also } \mathcal{L}^{H_3} &\ni \zeta_9 \zeta_9^4 \zeta_9^{-2} = \zeta_9^3 = \zeta_3, \text{ so } \mathbb{Q}(\zeta_3) \subseteq \mathcal{L}^{H_3}. \\ [\mathbb{Q}(\zeta_3) : \mathbb{Q}] &= \phi(3) = 2 = [\mathcal{G} : \mathcal{H}_3] = [\mathcal{L}^{H_3} : \mathbb{Q}], \\ \text{so } \mathcal{L}^{H_3} = \mathbb{Q}(\zeta_3). \end{split}$$

 $L^{H_2} = L \cap \mathbb{R}$ since σ_{-1} is complex conjugation.

$$\begin{split} L^{H_2} \ni \zeta_9 \zeta_9^{-1} &= 1 \text{ and } \alpha = \zeta_9 + \zeta_9^{-1} = 2\cos(2\pi/9), \\ \text{whose conjugates are } \alpha &= \sigma_{\pm 1}(\alpha), \\ \beta &= \sigma_{\pm 2}(\alpha) = \zeta_9^2 + \zeta_9^{-2} = 2\cos(4\pi/9), \\ \text{and } \gamma &= \sigma_{\pm 4}(\alpha) = \zeta_9^4 + \zeta_9^{-4} = 2\cos(8\pi/9). \\ \alpha, \beta, \gamma \text{ distinct, so } \alpha \notin L^G = \mathbb{Q}, \text{ so } \mathbb{Q} \subsetneq \mathbb{Q}(\alpha) \subseteq L^{H_2}. \\ [\mathbb{Q}(\alpha) : \mathbb{Q}] &= \deg_{\mathbb{Q}} \alpha = \# \text{conjs} = 3 = [G : H_2] = [L^{H_2} : \mathbb{Q}] \\ & \rightsquigarrow L^{H_2} = \mathbb{Q}(\alpha) = \mathbb{Q}(\beta) = \mathbb{Q}(\gamma). \end{split}$$

The min poly of α over ${\mathbb Q}$ is

$$P(x) = \prod_{c \in G \cdot \alpha} (x - c) = (x - \alpha)(x - \beta)(x - \gamma).$$

Its coefficients are combinations of powers of ζ_9 which lie in $\mathbb{Q} \rightsquigarrow$ fixed by G

→ symmetric in roots of $\Phi_9(x) = x^6 + x^3 + 1$ → computable by Vieta.

One finds
$$P(x) = x^3 - 3x + 1$$
.

Other applications (NON-EXAMINABLE)

Constructible numbers

Theorem (Wantzel)

$$\alpha \in \mathbb{R}$$
 is constructible \iff there exist fields
 $\mathbb{Q} = E_0 \subset \cdots \subset E_r = \mathbb{Q}(\alpha)$
such that $[E_{j+1} : E_j] = 2$ for all j .

Corollary

$$\alpha$$
 constructible $\Rightarrow \alpha$ alg. $/\mathbb{Q}$ and $[\mathbb{Q}(\alpha) : \mathbb{Q}] =$ power of 2.

Counter-example

Let $\alpha \in \mathbb{R}$ root of $f(x) = x^4 - 8x^2 + 4x + 2 \in \mathbb{Q}[x]$. f(x) irr $/\mathbb{Q}$, so $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 4$; yet α not constructible! Indeed, let $N = \mathbb{Q}(\alpha_1, \dots, \alpha_4)$ where α_j roots of f(x). Then $G = \operatorname{Gal}(N/\mathbb{Q}) \leqslant S_4$, and $\mathbb{Q}(\alpha) \subset N$ corresponds to $G_\alpha \leqslant G$. It turns out that $G = S_4$, so $G_\alpha = \{\operatorname{Id}\} \times S_3 \leqslant S_4$. Since there is no $G_\alpha < H < G$, there is no $\mathbb{Q} \subsetneq E \subsetneq \mathbb{Q}(\alpha)$.

Constructible numbers vs. 2-groups

Definition

Let $p \in \mathbb{N}$ be prime. A p-group is a finite group G such that #G is a power of p.

Proposition

If G is a p-group, then there exist $\{1_G\} = H_0 < \cdots < H_r = G$ such that $[H_{j+1} : H_j] = p$ for all j.

Theorem

Let $\alpha \in \mathbb{R}$ alg./ \mathbb{Q} , and N = Galois closure of $\mathbb{Q}(\alpha)/\mathbb{Q}$. Then

 α is constructible \iff Gal (N/\mathbb{Q}) is a 2-group.

Proposition

If L/K is a finite separable extension, then the number of $K \subseteq E \subseteq L$ is finite.

Proof.

Let N = normal closure of L/K. Then N/K is finite Galois, so G = Gal(N/K) is finite, so there are finitely many $H \leq G$, whence finitely many $K \subseteq E \subseteq N$.

A vector space lemma

Lemma

Let K be a field, and V a vector space over K. If $V = \bigcup_{j=1}^{r} W_j$ with $W_j \subsetneq V$ subspaces, then K is finite.

Proof.

WLOG there exists
$$v \in V \setminus \bigcup_{j=1}^{r-1} W_j$$
, in particular $v \in W_r$.
Let also $a \in V \setminus W_r$, and $L = \{a + \lambda v \mid \lambda \in K\}$.
If $p = a + \lambda v \in L \cap W_r$, then $a = p - \lambda v \in W_r$, absurd.
So $L \cap W_r = \emptyset$.
If $p = a + \lambda v$, $q = a + \mu v \in L \cap W_j$ for $j < r$, then
 $(\mu - \lambda)v = q - p \in W_j$, so $p = q \rightsquigarrow \#(L \cap W_j) \leq 1$.

As $L = L \cap V = \bigcup_{j=1}^{r} (L \cap W_j), \ \#K = \#L \leq r-1.$

Theorem (Primitive element theorem)

Let L/K be a finite separable extension. There exists a primitive element $\gamma \in L$, i.e. such that $L = K(\gamma)$.

Proof.

If K finite, OK. Suppose K infinite. $L = \bigcup_{\alpha \in L} K(\alpha)$. This is actually a finite union, since there are finitely many $K \subseteq E \subseteq L$. Apply lemma.

Example

$$\begin{aligned} \mathbb{Q}(\sqrt{2},\sqrt{3}) &= \mathbb{Q}(\sqrt{2}+\sqrt{3}) \\ &= \mathbb{Q}(x\sqrt{2}+y\sqrt{3}) \text{ for all } 0 \neq x, y \in \mathbb{Q}. \end{aligned}$$

Counter-example

Let
$$L = k(s, t)$$
 where char $k = p$, and $K = k(s^{p}, t^{p})$.
 $[L : K] = p^{2}$, because $K \subset k(s, t^{p}) = K(s) \subset L$.
For all $\alpha = f(s, t) \in L$, $a = \alpha^{p} = \operatorname{Frob} \alpha \in k^{p}(s^{p}, t^{p}) \subseteq K$,
so α root of $x^{p} - a \in K[x]$, so $[K(\alpha) : K] \leq p$, so $L \supseteq K(\alpha)$
For $\lambda \in k$, let $E_{\lambda} = K(s + \lambda t)$. If $E_{\lambda} = E_{\mu}$ for $\lambda \neq \mu$, then

 $s + \mu t \in K(s + \lambda t)$, so $t = \frac{(s + \mu t)}{\mu - \lambda} \in K(s + \lambda t)$ and $s = (s + \lambda t) - \lambda t \in K(s + \lambda t)$, so $L = K(s, t) = K(s + \lambda t)$, absurd.

 \rightsquigarrow If $\#k = \infty$, e.g. $k = \mathbb{F}_{p}(u)$, that's ∞ many $K \subset E_{\lambda} \subset L$.